Cargando…
Evolution of Allosteric Citrate Binding Sites on 6-phosphofructo-1-kinase
As an important part of metabolism, metabolic flux through the glycolytic pathway is tightly regulated. The most complex control is exerted on 6-phosphofructo-1-kinase (PFK1) level; this control overrules the regulatory role of other allosteric enzymes. Among other effectors, citrate has been report...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2990764/ https://www.ncbi.nlm.nih.gov/pubmed/21124851 http://dx.doi.org/10.1371/journal.pone.0015447 |
_version_ | 1782192513214316544 |
---|---|
author | Usenik, Aleksandra Legiša, Matic |
author_facet | Usenik, Aleksandra Legiša, Matic |
author_sort | Usenik, Aleksandra |
collection | PubMed |
description | As an important part of metabolism, metabolic flux through the glycolytic pathway is tightly regulated. The most complex control is exerted on 6-phosphofructo-1-kinase (PFK1) level; this control overrules the regulatory role of other allosteric enzymes. Among other effectors, citrate has been reported to play a vital role in the suppression of this enzyme's activity. In eukaryotes, amino acid residues forming the allosteric binding site for citrate are found both on the N- and the C-terminal region of the enzyme. These site has evolved from the phosphoenolpyruvate/ADP binding site of bacterial PFK1 due to the processes of duplication and tandem fusion of prokaryotic ancestor gene followed by the divergence of the catalytic and effector binding sites. Stricter inhibition of the PFK1 enzyme was needed during the evolution of multi-cellular organisms, and the most stringent control of PFK1 by citrate occurs in vertebrates. By substituting a single amino acid (K557R or K617A) as a component of the allosteric binding site in the C-terminal region of human muscle type PFK-M with a residue found in the corresponding site of a fungal enzyme, the inhibitory effect of citrate was attenuated. Moreover, the proteins carrying these single mutations enabled growth of E. coli transformants encoding mutated human PFK-M in a glucose-containing medium that did not support the growth of E. coli transformed with native human PFK-M. Substitution of another residue at the citrate-binding site (D591V) of human PFK-M resulted in the complete loss of activity. Detailed analyses revealed that the mutated PFK-M subunits formed dimers but were unable to associate into the active tetrameric holoenzyme. These results suggest that stricter control over glycolytic flux developed in metazoans, whose somatic cells are largely characterized by slow proliferation. |
format | Text |
id | pubmed-2990764 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-29907642010-12-01 Evolution of Allosteric Citrate Binding Sites on 6-phosphofructo-1-kinase Usenik, Aleksandra Legiša, Matic PLoS One Research Article As an important part of metabolism, metabolic flux through the glycolytic pathway is tightly regulated. The most complex control is exerted on 6-phosphofructo-1-kinase (PFK1) level; this control overrules the regulatory role of other allosteric enzymes. Among other effectors, citrate has been reported to play a vital role in the suppression of this enzyme's activity. In eukaryotes, amino acid residues forming the allosteric binding site for citrate are found both on the N- and the C-terminal region of the enzyme. These site has evolved from the phosphoenolpyruvate/ADP binding site of bacterial PFK1 due to the processes of duplication and tandem fusion of prokaryotic ancestor gene followed by the divergence of the catalytic and effector binding sites. Stricter inhibition of the PFK1 enzyme was needed during the evolution of multi-cellular organisms, and the most stringent control of PFK1 by citrate occurs in vertebrates. By substituting a single amino acid (K557R or K617A) as a component of the allosteric binding site in the C-terminal region of human muscle type PFK-M with a residue found in the corresponding site of a fungal enzyme, the inhibitory effect of citrate was attenuated. Moreover, the proteins carrying these single mutations enabled growth of E. coli transformants encoding mutated human PFK-M in a glucose-containing medium that did not support the growth of E. coli transformed with native human PFK-M. Substitution of another residue at the citrate-binding site (D591V) of human PFK-M resulted in the complete loss of activity. Detailed analyses revealed that the mutated PFK-M subunits formed dimers but were unable to associate into the active tetrameric holoenzyme. These results suggest that stricter control over glycolytic flux developed in metazoans, whose somatic cells are largely characterized by slow proliferation. Public Library of Science 2010-11-23 /pmc/articles/PMC2990764/ /pubmed/21124851 http://dx.doi.org/10.1371/journal.pone.0015447 Text en Usenik and Legiša. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Usenik, Aleksandra Legiša, Matic Evolution of Allosteric Citrate Binding Sites on 6-phosphofructo-1-kinase |
title | Evolution of Allosteric Citrate Binding Sites on 6-phosphofructo-1-kinase |
title_full | Evolution of Allosteric Citrate Binding Sites on 6-phosphofructo-1-kinase |
title_fullStr | Evolution of Allosteric Citrate Binding Sites on 6-phosphofructo-1-kinase |
title_full_unstemmed | Evolution of Allosteric Citrate Binding Sites on 6-phosphofructo-1-kinase |
title_short | Evolution of Allosteric Citrate Binding Sites on 6-phosphofructo-1-kinase |
title_sort | evolution of allosteric citrate binding sites on 6-phosphofructo-1-kinase |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2990764/ https://www.ncbi.nlm.nih.gov/pubmed/21124851 http://dx.doi.org/10.1371/journal.pone.0015447 |
work_keys_str_mv | AT usenikaleksandra evolutionofallostericcitratebindingsiteson6phosphofructo1kinase AT legisamatic evolutionofallostericcitratebindingsiteson6phosphofructo1kinase |