Cargando…
Modeling cardiac β-adrenergic signaling with normalized-Hill differential equations: comparison with a biochemical model
BACKGROUND: New approaches are needed for large-scale predictive modeling of cellular signaling networks. While mass action and enzyme kinetic approaches require extensive biochemical data, current logic-based approaches are used primarily for qualitative predictions and have lacked direct quantitat...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2993667/ https://www.ncbi.nlm.nih.gov/pubmed/21087478 http://dx.doi.org/10.1186/1752-0509-4-157 |
_version_ | 1782192825862979584 |
---|---|
author | Kraeutler, Matthew J Soltis, Anthony R Saucerman, Jeffrey J |
author_facet | Kraeutler, Matthew J Soltis, Anthony R Saucerman, Jeffrey J |
author_sort | Kraeutler, Matthew J |
collection | PubMed |
description | BACKGROUND: New approaches are needed for large-scale predictive modeling of cellular signaling networks. While mass action and enzyme kinetic approaches require extensive biochemical data, current logic-based approaches are used primarily for qualitative predictions and have lacked direct quantitative comparison with biochemical models. RESULTS: We developed a logic-based differential equation modeling approach for cell signaling networks based on normalized Hill activation/inhibition functions controlled by logical AND and OR operators to characterize signaling crosstalk. Using this approach, we modeled the cardiac β(1)-adrenergic signaling network, including 36 reactions and 25 species. Direct comparison of this model to an extensively characterized and validated biochemical model of the same network revealed that the new model gave reasonably accurate predictions of key network properties, even with default parameters. Normalized Hill functions improved quantitative predictions of global functional relationships compared with prior logic-based approaches. Comprehensive sensitivity analysis revealed the significant role of PKA negative feedback on upstream signaling and the importance of phosphodiesterases as key negative regulators of the network. The model was then extended to incorporate recently identified protein interaction data involving integrin-mediated mechanotransduction. CONCLUSIONS: The normalized-Hill differential equation modeling approach allows quantitative prediction of network functional relationships and dynamics, even in systems with limited biochemical data. |
format | Text |
id | pubmed-2993667 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-29936672010-12-23 Modeling cardiac β-adrenergic signaling with normalized-Hill differential equations: comparison with a biochemical model Kraeutler, Matthew J Soltis, Anthony R Saucerman, Jeffrey J BMC Syst Biol Research Article BACKGROUND: New approaches are needed for large-scale predictive modeling of cellular signaling networks. While mass action and enzyme kinetic approaches require extensive biochemical data, current logic-based approaches are used primarily for qualitative predictions and have lacked direct quantitative comparison with biochemical models. RESULTS: We developed a logic-based differential equation modeling approach for cell signaling networks based on normalized Hill activation/inhibition functions controlled by logical AND and OR operators to characterize signaling crosstalk. Using this approach, we modeled the cardiac β(1)-adrenergic signaling network, including 36 reactions and 25 species. Direct comparison of this model to an extensively characterized and validated biochemical model of the same network revealed that the new model gave reasonably accurate predictions of key network properties, even with default parameters. Normalized Hill functions improved quantitative predictions of global functional relationships compared with prior logic-based approaches. Comprehensive sensitivity analysis revealed the significant role of PKA negative feedback on upstream signaling and the importance of phosphodiesterases as key negative regulators of the network. The model was then extended to incorporate recently identified protein interaction data involving integrin-mediated mechanotransduction. CONCLUSIONS: The normalized-Hill differential equation modeling approach allows quantitative prediction of network functional relationships and dynamics, even in systems with limited biochemical data. BioMed Central 2010-11-18 /pmc/articles/PMC2993667/ /pubmed/21087478 http://dx.doi.org/10.1186/1752-0509-4-157 Text en Copyright ©2010 Kraeutler et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Kraeutler, Matthew J Soltis, Anthony R Saucerman, Jeffrey J Modeling cardiac β-adrenergic signaling with normalized-Hill differential equations: comparison with a biochemical model |
title | Modeling cardiac β-adrenergic signaling with normalized-Hill differential equations: comparison with a biochemical model |
title_full | Modeling cardiac β-adrenergic signaling with normalized-Hill differential equations: comparison with a biochemical model |
title_fullStr | Modeling cardiac β-adrenergic signaling with normalized-Hill differential equations: comparison with a biochemical model |
title_full_unstemmed | Modeling cardiac β-adrenergic signaling with normalized-Hill differential equations: comparison with a biochemical model |
title_short | Modeling cardiac β-adrenergic signaling with normalized-Hill differential equations: comparison with a biochemical model |
title_sort | modeling cardiac β-adrenergic signaling with normalized-hill differential equations: comparison with a biochemical model |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2993667/ https://www.ncbi.nlm.nih.gov/pubmed/21087478 http://dx.doi.org/10.1186/1752-0509-4-157 |
work_keys_str_mv | AT kraeutlermatthewj modelingcardiacbadrenergicsignalingwithnormalizedhilldifferentialequationscomparisonwithabiochemicalmodel AT soltisanthonyr modelingcardiacbadrenergicsignalingwithnormalizedhilldifferentialequationscomparisonwithabiochemicalmodel AT saucermanjeffreyj modelingcardiacbadrenergicsignalingwithnormalizedhilldifferentialequationscomparisonwithabiochemicalmodel |