Cargando…
U1 snRNP protects pre-mRNAs from premature cleavage and polyadenylation
In higher eukaryotes, U1 snRNP forms spliceosomes in equal stoichiometry with U2, U4, U5 and U6, however its abundance far exceeds that of the other snRNPs. Here, we used antisense morpholino oligonucleotide (AMO) to U1 snRNA for functional U1 snRNP knockdown in HeLa cells and identified accumulated...
Autores principales: | , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2996489/ https://www.ncbi.nlm.nih.gov/pubmed/20881964 http://dx.doi.org/10.1038/nature09479 |
Sumario: | In higher eukaryotes, U1 snRNP forms spliceosomes in equal stoichiometry with U2, U4, U5 and U6, however its abundance far exceeds that of the other snRNPs. Here, we used antisense morpholino oligonucleotide (AMO) to U1 snRNA for functional U1 snRNP knockdown in HeLa cells and identified accumulated unspliced pre-mRNAs by genomic tiling microarrays. Remarkably, in addition to inhibiting splicing, U1 snRNP knockdown caused premature cleavage and polyadenylation (PCPA) in numerous pre-mRNAs at cryptic polyadenylation signals (PASs), frequently in introns near (< 5 kb) the start of the transcript. This did not occur when splicing was inhibited with U2 snRNA AMO or the U2 snRNP inactivating drug, spliceostatin A, unless U1 AMO was also included. We further show that U1 snRNA-pre-mRNA base pairing was required to suppress PCPA from nearby cryptic PASs located in introns. These findings reveal a critical splicing-independent function for U1 snRNP in protecting the transcriptome, which we propose explains its overabundance. |
---|