Cargando…

A hereditary spastic paraplegia mutation in kinesin-1A/KIF5A disrupts neurofilament transport

BACKGROUND: Hereditary spastic paraplegias are a group of neurological disorders characterized by progressive distal degeneration of the longest ascending and descending axons in the spinal cord, leading to lower limb spasticity and weakness. One of the dominantly inherited forms of this disease (sp...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Lina, Brown, Anthony
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3000839/
https://www.ncbi.nlm.nih.gov/pubmed/21087519
http://dx.doi.org/10.1186/1750-1326-5-52
Descripción
Sumario:BACKGROUND: Hereditary spastic paraplegias are a group of neurological disorders characterized by progressive distal degeneration of the longest ascending and descending axons in the spinal cord, leading to lower limb spasticity and weakness. One of the dominantly inherited forms of this disease (spastic gait type 10, or SPG10) is caused by point mutations in kinesin-1A (also known as KIF5A), which is thought to be an anterograde motor for neurofilaments. RESULTS: We investigated the effect of an SPG10 mutation in kinesin-1A (N256S-kinesin-1A) on neurofilament transport in cultured mouse cortical neurons using live-cell fluorescent imaging. N256S-kinesin-1A decreased both anterograde and retrograde neurofilament transport flux by decreasing the frequency of anterograde and retrograde movements. Anterograde velocity was not affected, whereas retrograde velocity actually increased. CONCLUSIONS: These data reveal subtle complexities to the functional interdependence of the anterograde and retrograde neurofilament motors and they also raise the possibility that anterograde and retrograde neurofilament transport may be disrupted in patients with SPG10.