Cargando…

Clearance (née Rowland) concepts: a downdate and an update

A number of experimental observations in the late 1960s, early 1970s could not be explained by the pharmacokinetic theory available at that time. For example rats receiving phenobarbital as an enzyme inducing agent exhibited increased elimination of phenylbutazone in vitro in liver microsomes and in...

Descripción completa

Detalles Bibliográficos
Autor principal: Benet, Leslie Z.
Formato: Texto
Lenguaje:English
Publicado: Springer US 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3005114/
https://www.ncbi.nlm.nih.gov/pubmed/21113650
http://dx.doi.org/10.1007/s10928-010-9187-8
_version_ 1782194067964166144
author Benet, Leslie Z.
author_facet Benet, Leslie Z.
author_sort Benet, Leslie Z.
collection PubMed
description A number of experimental observations in the late 1960s, early 1970s could not be explained by the pharmacokinetic theory available at that time. For example rats receiving phenobarbital as an enzyme inducing agent exhibited increased elimination of phenylbutazone in vitro in liver microsomes and in vivo in whole animals compared to that observed in non-induced animals. However, for desipramine, although phenobarbital increased elimination in microsomes, no change in plasma disappearance was noted in vivo for this drug between rats induced with phenobarbital and control rats. Similar in vitro–in vivo discordancies were seen with changes in protein binding. The introduction of clearance concepts in the early 1970s by Professor Rowland and others provided the scientific rationale for these apparently contradictory findings and the recognition that clearance, not half-life, was the measure of the body’s ability to eliminate drugs and most importantly that changes in pathology and physiology could be correlated with measures of clearance. Up to that time half-life was well recognized in terms of basic chemical principles as an appropriate measure of the rate of elimination and reflective of changes in the rate of elimination. The difference between chemistry and pharmacokinetics, however, is that in chemistry the volume in which the reaction occurs does not change. In contrast, in pharmacokinetics, disease states and differences in physiology can change the space available in which the drug may distribute in the body. Thus, it was necessary to develop a pharmacokinetic measure of volume that was independent of elimination, i.e., V(ss). Now, the relationship between V(ss) and clearance led to a unique measure of time of drug in the body, the mean residence time. Although this parameter is calculated in all PK programs, very few pharmaceutical scientists know how it can be useful. Very recently, we have shown that the concepts of accumulation, prediction of which is the clinically relevant use for half-life and mean residence time, are flawed and that the appropriate time dependent parameter to predict accumulation has not been previously correctly identified. Finally, when clearance concepts were developed our understanding of the importance of drug transporters was nonexistent. A critical, and generally unrecognized assumption (which is only explicitly stated in Professor Rowland’s seminal 1973 paper), in the development of the theory of clearance is that the unbound drug concentration in the organ of elimination is in a constant equilibrium with the unbound drug concentration in the systemic circulation, where drug concentration measurements are made. Transporter drug–drug and disease interactions may, in fact, change this equilibrium and potentially what we consider as intrinsic clearance, may not be independent of an eliminating organ volume parameter, contrary to what we have been teaching for the past 37 years.
format Text
id pubmed-3005114
institution National Center for Biotechnology Information
language English
publishDate 2010
publisher Springer US
record_format MEDLINE/PubMed
spelling pubmed-30051142011-01-19 Clearance (née Rowland) concepts: a downdate and an update Benet, Leslie Z. J Pharmacokinet Pharmacodyn Article A number of experimental observations in the late 1960s, early 1970s could not be explained by the pharmacokinetic theory available at that time. For example rats receiving phenobarbital as an enzyme inducing agent exhibited increased elimination of phenylbutazone in vitro in liver microsomes and in vivo in whole animals compared to that observed in non-induced animals. However, for desipramine, although phenobarbital increased elimination in microsomes, no change in plasma disappearance was noted in vivo for this drug between rats induced with phenobarbital and control rats. Similar in vitro–in vivo discordancies were seen with changes in protein binding. The introduction of clearance concepts in the early 1970s by Professor Rowland and others provided the scientific rationale for these apparently contradictory findings and the recognition that clearance, not half-life, was the measure of the body’s ability to eliminate drugs and most importantly that changes in pathology and physiology could be correlated with measures of clearance. Up to that time half-life was well recognized in terms of basic chemical principles as an appropriate measure of the rate of elimination and reflective of changes in the rate of elimination. The difference between chemistry and pharmacokinetics, however, is that in chemistry the volume in which the reaction occurs does not change. In contrast, in pharmacokinetics, disease states and differences in physiology can change the space available in which the drug may distribute in the body. Thus, it was necessary to develop a pharmacokinetic measure of volume that was independent of elimination, i.e., V(ss). Now, the relationship between V(ss) and clearance led to a unique measure of time of drug in the body, the mean residence time. Although this parameter is calculated in all PK programs, very few pharmaceutical scientists know how it can be useful. Very recently, we have shown that the concepts of accumulation, prediction of which is the clinically relevant use for half-life and mean residence time, are flawed and that the appropriate time dependent parameter to predict accumulation has not been previously correctly identified. Finally, when clearance concepts were developed our understanding of the importance of drug transporters was nonexistent. A critical, and generally unrecognized assumption (which is only explicitly stated in Professor Rowland’s seminal 1973 paper), in the development of the theory of clearance is that the unbound drug concentration in the organ of elimination is in a constant equilibrium with the unbound drug concentration in the systemic circulation, where drug concentration measurements are made. Transporter drug–drug and disease interactions may, in fact, change this equilibrium and potentially what we consider as intrinsic clearance, may not be independent of an eliminating organ volume parameter, contrary to what we have been teaching for the past 37 years. Springer US 2010-11-27 2010 /pmc/articles/PMC3005114/ /pubmed/21113650 http://dx.doi.org/10.1007/s10928-010-9187-8 Text en © The Author(s) 2010 https://creativecommons.org/licenses/by-nc/4.0/ This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.
spellingShingle Article
Benet, Leslie Z.
Clearance (née Rowland) concepts: a downdate and an update
title Clearance (née Rowland) concepts: a downdate and an update
title_full Clearance (née Rowland) concepts: a downdate and an update
title_fullStr Clearance (née Rowland) concepts: a downdate and an update
title_full_unstemmed Clearance (née Rowland) concepts: a downdate and an update
title_short Clearance (née Rowland) concepts: a downdate and an update
title_sort clearance (née rowland) concepts: a downdate and an update
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3005114/
https://www.ncbi.nlm.nih.gov/pubmed/21113650
http://dx.doi.org/10.1007/s10928-010-9187-8
work_keys_str_mv AT benetlesliez clearanceneerowlandconceptsadowndateandanupdate