Cargando…
Redox-Sensitivity and Site-Specificity of S- and N- Denitrosation in Proteins
BACKGROUND: S-nitrosation – the formation of S-nitrosothiols (RSNOs) at cysteine residues in proteins – is a posttranslational modification involved in signal transduction and nitric oxide (NO) transport. Recent studies would also suggest the formation of N-nitrosamines (RNNOs) in proteins in vivo,...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3006389/ https://www.ncbi.nlm.nih.gov/pubmed/21203591 http://dx.doi.org/10.1371/journal.pone.0014400 |
_version_ | 1782194185403629568 |
---|---|
author | Jourd'heuil, Frances L. Lowery, Anthony M. Melton, Elaina M. Mnaimneh, Sanie Bryan, Nathan S. Fernandez, Bernadette O. Park, Joo-Ho Ha, Chung-Eun Bhagavan, Nadhipuram V. Feelisch, Martin Jourd'heuil, David |
author_facet | Jourd'heuil, Frances L. Lowery, Anthony M. Melton, Elaina M. Mnaimneh, Sanie Bryan, Nathan S. Fernandez, Bernadette O. Park, Joo-Ho Ha, Chung-Eun Bhagavan, Nadhipuram V. Feelisch, Martin Jourd'heuil, David |
author_sort | Jourd'heuil, Frances L. |
collection | PubMed |
description | BACKGROUND: S-nitrosation – the formation of S-nitrosothiols (RSNOs) at cysteine residues in proteins – is a posttranslational modification involved in signal transduction and nitric oxide (NO) transport. Recent studies would also suggest the formation of N-nitrosamines (RNNOs) in proteins in vivo, although their biological significance remains obscure. In this study, we characterized a redox-based mechanism by which N-nitroso-tryptophan residues in proteins may be denitrosated. METHODOLOGY/PRINCIPAL FINDINGS: The denitrosation of N-acetyl-nitroso Trp (NANT) by glutathione (GSH) required molecular oxygen and was inhibited by superoxide dismutase (SOD). Transnitrosation to form S-nitrosoglutathione (GSNO) was observed only in the absence of oxygen or presence of SOD. Protein denitrosation by GSH was studied using a set of mutant recombinant human serum albumin (HSA). Trp-214 and Cys-37 were the only two residues nitrosated by NO under aerobic conditions. Nitroso-Trp-214 in HSA was insensitive to denitrosation by GSH or ascorbate while denitrosation at Cys-37 was evident in the presence of GSH but not ascorbate. GSH-dependent denitrosation of Trp-214 was restored in a peptide fragment of helix II containing Trp-214. Finally, incubation of cell lysates with NANT revealed a pattern of protein nitrosation distinct from that observed with GSNO. CONCLUSIONS: We propose that the denitrosation of nitrosated Trp by GSH occurs through homolytic cleavage of nitroso Trp to NO and a Trp aminyl radical, driven by the formation of superoxide derived from the oxidation of GSH to GSSG. Overall, the accessibility of Trp residues to redox-active biomolecules determines the stability of protein-associated nitroso species such that in the case of HSA, N-nitroso-Trp-214 is insensitive to denitrosation by low-molecular-weight antioxidants. Moreover, RNNOs can generate free NO and transfer their NO moiety in an oxygen-dependent fashion, albeit site-specificities appear to differ markedly from that of RSNOs. |
format | Text |
id | pubmed-3006389 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-30063892011-01-03 Redox-Sensitivity and Site-Specificity of S- and N- Denitrosation in Proteins Jourd'heuil, Frances L. Lowery, Anthony M. Melton, Elaina M. Mnaimneh, Sanie Bryan, Nathan S. Fernandez, Bernadette O. Park, Joo-Ho Ha, Chung-Eun Bhagavan, Nadhipuram V. Feelisch, Martin Jourd'heuil, David PLoS One Research Article BACKGROUND: S-nitrosation – the formation of S-nitrosothiols (RSNOs) at cysteine residues in proteins – is a posttranslational modification involved in signal transduction and nitric oxide (NO) transport. Recent studies would also suggest the formation of N-nitrosamines (RNNOs) in proteins in vivo, although their biological significance remains obscure. In this study, we characterized a redox-based mechanism by which N-nitroso-tryptophan residues in proteins may be denitrosated. METHODOLOGY/PRINCIPAL FINDINGS: The denitrosation of N-acetyl-nitroso Trp (NANT) by glutathione (GSH) required molecular oxygen and was inhibited by superoxide dismutase (SOD). Transnitrosation to form S-nitrosoglutathione (GSNO) was observed only in the absence of oxygen or presence of SOD. Protein denitrosation by GSH was studied using a set of mutant recombinant human serum albumin (HSA). Trp-214 and Cys-37 were the only two residues nitrosated by NO under aerobic conditions. Nitroso-Trp-214 in HSA was insensitive to denitrosation by GSH or ascorbate while denitrosation at Cys-37 was evident in the presence of GSH but not ascorbate. GSH-dependent denitrosation of Trp-214 was restored in a peptide fragment of helix II containing Trp-214. Finally, incubation of cell lysates with NANT revealed a pattern of protein nitrosation distinct from that observed with GSNO. CONCLUSIONS: We propose that the denitrosation of nitrosated Trp by GSH occurs through homolytic cleavage of nitroso Trp to NO and a Trp aminyl radical, driven by the formation of superoxide derived from the oxidation of GSH to GSSG. Overall, the accessibility of Trp residues to redox-active biomolecules determines the stability of protein-associated nitroso species such that in the case of HSA, N-nitroso-Trp-214 is insensitive to denitrosation by low-molecular-weight antioxidants. Moreover, RNNOs can generate free NO and transfer their NO moiety in an oxygen-dependent fashion, albeit site-specificities appear to differ markedly from that of RSNOs. Public Library of Science 2010-12-21 /pmc/articles/PMC3006389/ /pubmed/21203591 http://dx.doi.org/10.1371/journal.pone.0014400 Text en Jourd'heuil et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Jourd'heuil, Frances L. Lowery, Anthony M. Melton, Elaina M. Mnaimneh, Sanie Bryan, Nathan S. Fernandez, Bernadette O. Park, Joo-Ho Ha, Chung-Eun Bhagavan, Nadhipuram V. Feelisch, Martin Jourd'heuil, David Redox-Sensitivity and Site-Specificity of S- and N- Denitrosation in Proteins |
title | Redox-Sensitivity and Site-Specificity of S- and N- Denitrosation in Proteins |
title_full | Redox-Sensitivity and Site-Specificity of S- and N- Denitrosation in Proteins |
title_fullStr | Redox-Sensitivity and Site-Specificity of S- and N- Denitrosation in Proteins |
title_full_unstemmed | Redox-Sensitivity and Site-Specificity of S- and N- Denitrosation in Proteins |
title_short | Redox-Sensitivity and Site-Specificity of S- and N- Denitrosation in Proteins |
title_sort | redox-sensitivity and site-specificity of s- and n- denitrosation in proteins |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3006389/ https://www.ncbi.nlm.nih.gov/pubmed/21203591 http://dx.doi.org/10.1371/journal.pone.0014400 |
work_keys_str_mv | AT jourdheuilfrancesl redoxsensitivityandsitespecificityofsandndenitrosationinproteins AT loweryanthonym redoxsensitivityandsitespecificityofsandndenitrosationinproteins AT meltonelainam redoxsensitivityandsitespecificityofsandndenitrosationinproteins AT mnaimnehsanie redoxsensitivityandsitespecificityofsandndenitrosationinproteins AT bryannathans redoxsensitivityandsitespecificityofsandndenitrosationinproteins AT fernandezbernadetteo redoxsensitivityandsitespecificityofsandndenitrosationinproteins AT parkjooho redoxsensitivityandsitespecificityofsandndenitrosationinproteins AT hachungeun redoxsensitivityandsitespecificityofsandndenitrosationinproteins AT bhagavannadhipuramv redoxsensitivityandsitespecificityofsandndenitrosationinproteins AT feelischmartin redoxsensitivityandsitespecificityofsandndenitrosationinproteins AT jourdheuildavid redoxsensitivityandsitespecificityofsandndenitrosationinproteins |