Cargando…
Amp-PCR: Combining a Random Unbiased Phi29-Amplification with a Specific Real-Time PCR, Performed in One Tube to Increase PCR Sensitivity
In clinical situations where a diagnostic real-time PCR assay is not sensitive enough, leading to low or falsely negative results, or where detection earlier in a disease progression would benefit the patient, an unbiased pre-amplification prior to the real-time PCR could be beneficial. In Amp-PCR,...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3013126/ https://www.ncbi.nlm.nih.gov/pubmed/21209824 http://dx.doi.org/10.1371/journal.pone.0015719 |
Sumario: | In clinical situations where a diagnostic real-time PCR assay is not sensitive enough, leading to low or falsely negative results, or where detection earlier in a disease progression would benefit the patient, an unbiased pre-amplification prior to the real-time PCR could be beneficial. In Amp-PCR, an unbiased random Phi29 pre-amplification is combined with a specific real-time PCR reaction. The two reactions are separated physically by a wax-layer (AmpliWax®) and are run in sequel in the same sealed tube. Amp-PCR can increase the specific PCR signal at least 100×10(6)-fold and make it possible to detect positive samples normally under the detection limit of the specific real-time PCR. The risk of contamination is eliminated and Amp-PCR could replace nested-PCR in situations where increased sensitivity is needed e.g. in routine PCR diagnostic analysis. We show Amp-PCR to work on clinical samples containing circular and linear viral dsDNA genomes, but can work well on DNA of any origin, both from non-cellular (virus) and cellular sources (bacteria, archae, eukaryotes). |
---|