Cargando…

The differential activity of interferon-α subtypes is consistent among distinct target genes and cell types

IFN-α proteins have been described to originate from 14 individual genes and allelic variants. However, the exceptional diversity of IFN-α and its functional impact are still poorly understood. To characterize the biological activity of IFN-α subtypes in relation to the cellular background, we inves...

Descripción completa

Detalles Bibliográficos
Autores principales: Moll, Herwig P., Maier, Thomas, Zommer, Anna, Lavoie, Thomas, Brostjan, Christine
Formato: Texto
Lenguaje:English
Publicado: Elsevier Science Ltd 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3020287/
https://www.ncbi.nlm.nih.gov/pubmed/20943413
http://dx.doi.org/10.1016/j.cyto.2010.09.006
_version_ 1782196280043241472
author Moll, Herwig P.
Maier, Thomas
Zommer, Anna
Lavoie, Thomas
Brostjan, Christine
author_facet Moll, Herwig P.
Maier, Thomas
Zommer, Anna
Lavoie, Thomas
Brostjan, Christine
author_sort Moll, Herwig P.
collection PubMed
description IFN-α proteins have been described to originate from 14 individual genes and allelic variants. However, the exceptional diversity of IFN-α and its functional impact are still poorly understood. To characterize the biological activity of IFN-α subtypes in relation to the cellular background, we investigated the effect of IFN-α treatment in primary fibroblasts and endothelial cells of vascular or lymphatic origin. The cellular response was evaluated for 13 distinct IFN-α proteins with respect to transcript regulation of the IFN-stimulated genes (ISGs) IFIT1, ISG15, CXCL10, CXCL11 and CCL8. The IFN-α proteins displayed a remarkably consistent potency in gene induction irrespective of target gene and cellular background which led to the classification of IFN-α subtypes with low (IFN-α1), intermediate (IFN-α2a, -4a, -4b, -5, -16, -21) and high (IFN-α2b, -6, -7, -8, -10, -14) activity. The differential potency of IFN-α classes was confirmed at the ISG protein level and the functional protection of cells against influenza virus infection. Differences in IFN activity were only observed at subsaturating levels of IFN-α proteins and did not affect the time course of ISG regulation. Cell-type specific responses were apparent for distinct target genes independent of IFN-α subtype and were based on different levels of basal versus inducible gene expression. While fibroblasts presented with a high constitutive level of IFIT1, the expression in endothelial cells was strongly induced by IFN-α. In contrast, CXCL10 and CXCL11 transcript levels were generally higher in endothelial cells despite a pronounced induction by IFN-α in fibroblasts. In summary, the divergent potency of IFN-α proteins and the cell-type specific regulation of individual IFN target genes may allow for the fine tuning of cellular responses to pathogen defense.
format Text
id pubmed-3020287
institution National Center for Biotechnology Information
language English
publishDate 2011
publisher Elsevier Science Ltd
record_format MEDLINE/PubMed
spelling pubmed-30202872011-02-11 The differential activity of interferon-α subtypes is consistent among distinct target genes and cell types Moll, Herwig P. Maier, Thomas Zommer, Anna Lavoie, Thomas Brostjan, Christine Cytokine Article IFN-α proteins have been described to originate from 14 individual genes and allelic variants. However, the exceptional diversity of IFN-α and its functional impact are still poorly understood. To characterize the biological activity of IFN-α subtypes in relation to the cellular background, we investigated the effect of IFN-α treatment in primary fibroblasts and endothelial cells of vascular or lymphatic origin. The cellular response was evaluated for 13 distinct IFN-α proteins with respect to transcript regulation of the IFN-stimulated genes (ISGs) IFIT1, ISG15, CXCL10, CXCL11 and CCL8. The IFN-α proteins displayed a remarkably consistent potency in gene induction irrespective of target gene and cellular background which led to the classification of IFN-α subtypes with low (IFN-α1), intermediate (IFN-α2a, -4a, -4b, -5, -16, -21) and high (IFN-α2b, -6, -7, -8, -10, -14) activity. The differential potency of IFN-α classes was confirmed at the ISG protein level and the functional protection of cells against influenza virus infection. Differences in IFN activity were only observed at subsaturating levels of IFN-α proteins and did not affect the time course of ISG regulation. Cell-type specific responses were apparent for distinct target genes independent of IFN-α subtype and were based on different levels of basal versus inducible gene expression. While fibroblasts presented with a high constitutive level of IFIT1, the expression in endothelial cells was strongly induced by IFN-α. In contrast, CXCL10 and CXCL11 transcript levels were generally higher in endothelial cells despite a pronounced induction by IFN-α in fibroblasts. In summary, the divergent potency of IFN-α proteins and the cell-type specific regulation of individual IFN target genes may allow for the fine tuning of cellular responses to pathogen defense. Elsevier Science Ltd 2011-01 /pmc/articles/PMC3020287/ /pubmed/20943413 http://dx.doi.org/10.1016/j.cyto.2010.09.006 Text en © 2011 Elsevier Ltd. https://creativecommons.org/licenses/by-nc-nd/3.0/ Open Access under CC BY-NC-ND 3.0 (https://creativecommons.org/licenses/by-nc-nd/3.0/) license
spellingShingle Article
Moll, Herwig P.
Maier, Thomas
Zommer, Anna
Lavoie, Thomas
Brostjan, Christine
The differential activity of interferon-α subtypes is consistent among distinct target genes and cell types
title The differential activity of interferon-α subtypes is consistent among distinct target genes and cell types
title_full The differential activity of interferon-α subtypes is consistent among distinct target genes and cell types
title_fullStr The differential activity of interferon-α subtypes is consistent among distinct target genes and cell types
title_full_unstemmed The differential activity of interferon-α subtypes is consistent among distinct target genes and cell types
title_short The differential activity of interferon-α subtypes is consistent among distinct target genes and cell types
title_sort differential activity of interferon-α subtypes is consistent among distinct target genes and cell types
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3020287/
https://www.ncbi.nlm.nih.gov/pubmed/20943413
http://dx.doi.org/10.1016/j.cyto.2010.09.006
work_keys_str_mv AT mollherwigp thedifferentialactivityofinterferonasubtypesisconsistentamongdistincttargetgenesandcelltypes
AT maierthomas thedifferentialactivityofinterferonasubtypesisconsistentamongdistincttargetgenesandcelltypes
AT zommeranna thedifferentialactivityofinterferonasubtypesisconsistentamongdistincttargetgenesandcelltypes
AT lavoiethomas thedifferentialactivityofinterferonasubtypesisconsistentamongdistincttargetgenesandcelltypes
AT brostjanchristine thedifferentialactivityofinterferonasubtypesisconsistentamongdistincttargetgenesandcelltypes
AT mollherwigp differentialactivityofinterferonasubtypesisconsistentamongdistincttargetgenesandcelltypes
AT maierthomas differentialactivityofinterferonasubtypesisconsistentamongdistincttargetgenesandcelltypes
AT zommeranna differentialactivityofinterferonasubtypesisconsistentamongdistincttargetgenesandcelltypes
AT lavoiethomas differentialactivityofinterferonasubtypesisconsistentamongdistincttargetgenesandcelltypes
AT brostjanchristine differentialactivityofinterferonasubtypesisconsistentamongdistincttargetgenesandcelltypes