Cargando…
In Vitro Activity of Geldanamycin Derivatives against Schistosoma japonicum and Brugia malayi
Geldanamycin (GA) is a benzoquinone-containing ansamycin that inhibits heat shock protein 90. GA derivatives are being evaluated as anti-neoplastic agents, but their utility against parasites whose heat shock proteins (Hsps) have homology with human Hsp90 is unknown. The activities of four synthetic...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3021863/ https://www.ncbi.nlm.nih.gov/pubmed/21253549 http://dx.doi.org/10.1155/2010/716498 |
_version_ | 1782196433986781184 |
---|---|
author | Wenkert, David Ramirez, Bernadette Shen, Yuehai Kron, Michael A. |
author_facet | Wenkert, David Ramirez, Bernadette Shen, Yuehai Kron, Michael A. |
author_sort | Wenkert, David |
collection | PubMed |
description | Geldanamycin (GA) is a benzoquinone-containing ansamycin that inhibits heat shock protein 90. GA derivatives are being evaluated as anti-neoplastic agents, but their utility against parasites whose heat shock proteins (Hsps) have homology with human Hsp90 is unknown. The activities of four synthetic GA derivatives were tested in vitro using adult Brugia malayi and Schistosoma japonicum. Two of the derivatives, 17-N-allyl-17-demethoxygeldanamycin (17-AAG) and 17-N-(2-dimethylaminoethylamino)-17-demethoxygeldanamycin (DMAG), are currently in human clinical trials as anticancer drugs. Using concentrations considered safe peak plasma concentrations for these two derivatives, all four derivatives were active against both parasites. The less toxic derivative 17-AAG was as effective as GA in killing S. japonicum, and both DMAG and 5′-bromogeldanoxazinone were more active than 17-AAG against B. malayi. This work supports continued evaluation of ansamycin derivatives as broad spectrum antiparasitic agents. |
format | Text |
id | pubmed-3021863 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | Hindawi Publishing Corporation |
record_format | MEDLINE/PubMed |
spelling | pubmed-30218632011-01-20 In Vitro Activity of Geldanamycin Derivatives against Schistosoma japonicum and Brugia malayi Wenkert, David Ramirez, Bernadette Shen, Yuehai Kron, Michael A. J Parasitol Res Research Article Geldanamycin (GA) is a benzoquinone-containing ansamycin that inhibits heat shock protein 90. GA derivatives are being evaluated as anti-neoplastic agents, but their utility against parasites whose heat shock proteins (Hsps) have homology with human Hsp90 is unknown. The activities of four synthetic GA derivatives were tested in vitro using adult Brugia malayi and Schistosoma japonicum. Two of the derivatives, 17-N-allyl-17-demethoxygeldanamycin (17-AAG) and 17-N-(2-dimethylaminoethylamino)-17-demethoxygeldanamycin (DMAG), are currently in human clinical trials as anticancer drugs. Using concentrations considered safe peak plasma concentrations for these two derivatives, all four derivatives were active against both parasites. The less toxic derivative 17-AAG was as effective as GA in killing S. japonicum, and both DMAG and 5′-bromogeldanoxazinone were more active than 17-AAG against B. malayi. This work supports continued evaluation of ansamycin derivatives as broad spectrum antiparasitic agents. Hindawi Publishing Corporation 2010 2010-12-29 /pmc/articles/PMC3021863/ /pubmed/21253549 http://dx.doi.org/10.1155/2010/716498 Text en Copyright © 2010 David Wenkert et al. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Wenkert, David Ramirez, Bernadette Shen, Yuehai Kron, Michael A. In Vitro Activity of Geldanamycin Derivatives against Schistosoma japonicum and Brugia malayi |
title |
In Vitro Activity of Geldanamycin Derivatives against Schistosoma japonicum and Brugia malayi
|
title_full |
In Vitro Activity of Geldanamycin Derivatives against Schistosoma japonicum and Brugia malayi
|
title_fullStr |
In Vitro Activity of Geldanamycin Derivatives against Schistosoma japonicum and Brugia malayi
|
title_full_unstemmed |
In Vitro Activity of Geldanamycin Derivatives against Schistosoma japonicum and Brugia malayi
|
title_short |
In Vitro Activity of Geldanamycin Derivatives against Schistosoma japonicum and Brugia malayi
|
title_sort | in vitro activity of geldanamycin derivatives against schistosoma japonicum and brugia malayi |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3021863/ https://www.ncbi.nlm.nih.gov/pubmed/21253549 http://dx.doi.org/10.1155/2010/716498 |
work_keys_str_mv | AT wenkertdavid invitroactivityofgeldanamycinderivativesagainstschistosomajaponicumandbrugiamalayi AT ramirezbernadette invitroactivityofgeldanamycinderivativesagainstschistosomajaponicumandbrugiamalayi AT shenyuehai invitroactivityofgeldanamycinderivativesagainstschistosomajaponicumandbrugiamalayi AT kronmichaela invitroactivityofgeldanamycinderivativesagainstschistosomajaponicumandbrugiamalayi |