Cargando…

Maturation of monocyte derived dendritic cells with OK432 boosts IL-12p70 secretion and conveys strong T-cell responses

BACKGROUND: Design of tumour specific immunotherapies using the patients' own dendritic cells (DC) is a fast advancing scientific field. The functional qualities of the DC generated in vitro are critical, and today's gold standard for maturation is a cytokine cocktail consisting of IL-1β,...

Descripción completa

Detalles Bibliográficos
Autores principales: Hovden, Arnt-Ove, Karlsen, Marie, Jonsson, Roland, Aarstad, Hans Jørgen, Appel, Silke
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3023782/
https://www.ncbi.nlm.nih.gov/pubmed/21208424
http://dx.doi.org/10.1186/1471-2172-12-2
Descripción
Sumario:BACKGROUND: Design of tumour specific immunotherapies using the patients' own dendritic cells (DC) is a fast advancing scientific field. The functional qualities of the DC generated in vitro are critical, and today's gold standard for maturation is a cytokine cocktail consisting of IL-1β, IL-6, TNF-α and PGE(2 )generating cells lacking IL-12p70 production. OK432 is an immunotherapeutic agent derived from killed Streptococcus pyogenes that has been used clinically to treat malignant and benign neoplasms for decades. METHODS: In this study, we analysed the effects of OK432 on DC maturation, DC migration, cytokine and chemokine secretion as well as T-cell stimulatory capacity, and compared it to the cytokine cocktail alone and combinations of OK432 with the cytokine cocktail. RESULTS: OK432 induced a marked up-regulation of CD40 on the cell surface as well as a strong inflammatory response from the DC with significantly more secretion of 19 different cytokines and chemokines compared to the cytokine cocktail. Interestingly, secretion of IL-15 and IL-12p70 was detected at high concentrations after maturation of DC with OK432. However, the OK432 treated DC did not migrate as well as DC treated with cytokine cocktail in a transwell migration assay. During allogeneic T-cell stimulation OK432 treated DC induced proliferation of over 50 percent of CD4 and 30 percent of CD8 T-cells for more than two cell divisions, whereas cytokine cocktail treated DC induced proliferation of 12 and 11 percent of CD4 and CD8 T-cells, respectively. CONCLUSIONS: The clinically approved compound OK432 has interesting properties that warrants its use in DC immunotherapy and should be considered as a potential immunomodulating agent in cancer immunotherapy.