Cargando…

Walking of antitumor bifunctional trinuclear Pt(II) complex on double-helical DNA

The trinuclear BBR3464 ([{trans-PtCl(NH(3))(2)}(2)µ-(trans-Pt(NH(3))(2)(H(2)N(CH(2))(6)NH(2))(2))](4+)) belongs to the polynuclear class of platinum-based anticancer agents. DNA adducts of this complex differ significantly in structure and type from those of clinically used mononuclear platinum comp...

Descripción completa

Detalles Bibliográficos
Autores principales: Malina, Jaroslav, Kasparkova, Jana, Farrell, Nicholas P., Brabec, Viktor
Formato: Texto
Lenguaje:English
Publicado: Oxford University Press 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3025560/
https://www.ncbi.nlm.nih.gov/pubmed/20833634
http://dx.doi.org/10.1093/nar/gkq803
Descripción
Sumario:The trinuclear BBR3464 ([{trans-PtCl(NH(3))(2)}(2)µ-(trans-Pt(NH(3))(2)(H(2)N(CH(2))(6)NH(2))(2))](4+)) belongs to the polynuclear class of platinum-based anticancer agents. DNA adducts of this complex differ significantly in structure and type from those of clinically used mononuclear platinum complexes, especially, long-range (Pt, Pt) intrastrand and interstrand cross-links are formed in both 5′–5′ and 3′–3′ orientations. We show employing short oligonucleotide duplexes containing single, site-specific cross-links of BBR3464 and gel electrophoresis that in contrast to major DNA adducts of clinically used platinum complexes, under physiological conditions the coordination bonds between platinum and N7 of G residues involved in the cross-links of BBR3464 can be cleaved. This cleavage may lead to the linkage isomerization reactions between this metallodrug and double-helical DNA. Differential scanning calorimetry of duplexes containing single, site-specific cross-links of BBR3464 reveals that one of the driving forces that leads to the lability of DNA cross-links of this metallodrug is a difference between the thermodynamic destabilization induced by the cross-link and by the adduct into which it could isomerize. The rearrangements may proceed in the way that cross-links originally formed in one strand of DNA can spontaneously translocate from one DNA strand to its complementary counterpart, which may evoke walking of the platinum complex on DNA molecule.