Cargando…
Site-Specific Integration and Expression of an Anti-Malarial Gene in Transgenic Anopheles gambiae Significantly Reduces Plasmodium Infections
Diseases transmitted by mosquitoes have a devastating impact on global health and this is worsening due to difficulties with existing control measures and climate change. Genetically modified mosquitoes that are refractory to disease transmission are seen as having great potential in the delivery of...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3026776/ https://www.ncbi.nlm.nih.gov/pubmed/21283619 http://dx.doi.org/10.1371/journal.pone.0014587 |
_version_ | 1782197081106022400 |
---|---|
author | Meredith, Janet M. Basu, Sanjay Nimmo, Derric D. Larget-Thiery, Isabelle Warr, Emma L. Underhill, Ann McArthur, Clare C. Carter, Victoria Hurd, Hilary Bourgouin, Catherine Eggleston, Paul |
author_facet | Meredith, Janet M. Basu, Sanjay Nimmo, Derric D. Larget-Thiery, Isabelle Warr, Emma L. Underhill, Ann McArthur, Clare C. Carter, Victoria Hurd, Hilary Bourgouin, Catherine Eggleston, Paul |
author_sort | Meredith, Janet M. |
collection | PubMed |
description | Diseases transmitted by mosquitoes have a devastating impact on global health and this is worsening due to difficulties with existing control measures and climate change. Genetically modified mosquitoes that are refractory to disease transmission are seen as having great potential in the delivery of novel control strategies. Historically the genetic modification of insects has relied upon transposable elements which have many limitations despite their successful use. To circumvent these limitations the Streptomyces phage phiC31 integrase system has been successfully adapted for site-specific transgene integration in insects. Here, we present the first site-specific transformation of Anopheles gambiae, the principal vector of human malaria. Mosquitoes were initially engineered to incorporate the phiC31 targeting site at a defined genomic location. A second phase of genetic modification then achieved site-specific integration of Vida3, a synthetic anti-malarial gene. Expression of Vida3, specifically in the midgut of bloodfed females, offered consistent and significant protection against Plasmodium yoelii nigeriensis, reducing average parasite intensity by 85%. Similar protection was observed against Plasmodium falciparum in some experiments, although protection was inconsistent. In the fight against malaria, it is imperative to establish a broad repertoire of both anti-malarial effector genes and tissue-specific promoters for their expression, enabling those offering maximum effect with minimum fitness cost to be identified. In the future, this technology will allow effective comparisons and informed choices to be made, potentially leading to complete transmission blockade. |
format | Text |
id | pubmed-3026776 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-30267762011-01-31 Site-Specific Integration and Expression of an Anti-Malarial Gene in Transgenic Anopheles gambiae Significantly Reduces Plasmodium Infections Meredith, Janet M. Basu, Sanjay Nimmo, Derric D. Larget-Thiery, Isabelle Warr, Emma L. Underhill, Ann McArthur, Clare C. Carter, Victoria Hurd, Hilary Bourgouin, Catherine Eggleston, Paul PLoS One Research Article Diseases transmitted by mosquitoes have a devastating impact on global health and this is worsening due to difficulties with existing control measures and climate change. Genetically modified mosquitoes that are refractory to disease transmission are seen as having great potential in the delivery of novel control strategies. Historically the genetic modification of insects has relied upon transposable elements which have many limitations despite their successful use. To circumvent these limitations the Streptomyces phage phiC31 integrase system has been successfully adapted for site-specific transgene integration in insects. Here, we present the first site-specific transformation of Anopheles gambiae, the principal vector of human malaria. Mosquitoes were initially engineered to incorporate the phiC31 targeting site at a defined genomic location. A second phase of genetic modification then achieved site-specific integration of Vida3, a synthetic anti-malarial gene. Expression of Vida3, specifically in the midgut of bloodfed females, offered consistent and significant protection against Plasmodium yoelii nigeriensis, reducing average parasite intensity by 85%. Similar protection was observed against Plasmodium falciparum in some experiments, although protection was inconsistent. In the fight against malaria, it is imperative to establish a broad repertoire of both anti-malarial effector genes and tissue-specific promoters for their expression, enabling those offering maximum effect with minimum fitness cost to be identified. In the future, this technology will allow effective comparisons and informed choices to be made, potentially leading to complete transmission blockade. Public Library of Science 2011-01-25 /pmc/articles/PMC3026776/ /pubmed/21283619 http://dx.doi.org/10.1371/journal.pone.0014587 Text en Meredith et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Meredith, Janet M. Basu, Sanjay Nimmo, Derric D. Larget-Thiery, Isabelle Warr, Emma L. Underhill, Ann McArthur, Clare C. Carter, Victoria Hurd, Hilary Bourgouin, Catherine Eggleston, Paul Site-Specific Integration and Expression of an Anti-Malarial Gene in Transgenic Anopheles gambiae Significantly Reduces Plasmodium Infections |
title | Site-Specific Integration and Expression of an Anti-Malarial Gene in Transgenic Anopheles gambiae Significantly Reduces Plasmodium Infections |
title_full | Site-Specific Integration and Expression of an Anti-Malarial Gene in Transgenic Anopheles gambiae Significantly Reduces Plasmodium Infections |
title_fullStr | Site-Specific Integration and Expression of an Anti-Malarial Gene in Transgenic Anopheles gambiae Significantly Reduces Plasmodium Infections |
title_full_unstemmed | Site-Specific Integration and Expression of an Anti-Malarial Gene in Transgenic Anopheles gambiae Significantly Reduces Plasmodium Infections |
title_short | Site-Specific Integration and Expression of an Anti-Malarial Gene in Transgenic Anopheles gambiae Significantly Reduces Plasmodium Infections |
title_sort | site-specific integration and expression of an anti-malarial gene in transgenic anopheles gambiae significantly reduces plasmodium infections |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3026776/ https://www.ncbi.nlm.nih.gov/pubmed/21283619 http://dx.doi.org/10.1371/journal.pone.0014587 |
work_keys_str_mv | AT meredithjanetm sitespecificintegrationandexpressionofanantimalarialgeneintransgenicanophelesgambiaesignificantlyreducesplasmodiuminfections AT basusanjay sitespecificintegrationandexpressionofanantimalarialgeneintransgenicanophelesgambiaesignificantlyreducesplasmodiuminfections AT nimmoderricd sitespecificintegrationandexpressionofanantimalarialgeneintransgenicanophelesgambiaesignificantlyreducesplasmodiuminfections AT largetthieryisabelle sitespecificintegrationandexpressionofanantimalarialgeneintransgenicanophelesgambiaesignificantlyreducesplasmodiuminfections AT warremmal sitespecificintegrationandexpressionofanantimalarialgeneintransgenicanophelesgambiaesignificantlyreducesplasmodiuminfections AT underhillann sitespecificintegrationandexpressionofanantimalarialgeneintransgenicanophelesgambiaesignificantlyreducesplasmodiuminfections AT mcarthurclarec sitespecificintegrationandexpressionofanantimalarialgeneintransgenicanophelesgambiaesignificantlyreducesplasmodiuminfections AT cartervictoria sitespecificintegrationandexpressionofanantimalarialgeneintransgenicanophelesgambiaesignificantlyreducesplasmodiuminfections AT hurdhilary sitespecificintegrationandexpressionofanantimalarialgeneintransgenicanophelesgambiaesignificantlyreducesplasmodiuminfections AT bourgouincatherine sitespecificintegrationandexpressionofanantimalarialgeneintransgenicanophelesgambiaesignificantlyreducesplasmodiuminfections AT egglestonpaul sitespecificintegrationandexpressionofanantimalarialgeneintransgenicanophelesgambiaesignificantlyreducesplasmodiuminfections |