Cargando…

Improved Precursor Directed Biosynthesis in E. coli via Directed Evolution

Erythromycin and related macrolide antibiotics are widely used polyketide natural products. We have evolved an engineered biosynthetic pathway in Escherichia coli that yields erythromycin analogs from simple synthetic precursors. Multiple rounds of mutagenesis and screening led to the identification...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Ho Young, Harvey, Colin J.B., Cane, David E., Khosla, Chaitan
Formato: Texto
Lenguaje:English
Publicado: 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3030684/
https://www.ncbi.nlm.nih.gov/pubmed/21081955
http://dx.doi.org/10.1038/ja.2010.129
Descripción
Sumario:Erythromycin and related macrolide antibiotics are widely used polyketide natural products. We have evolved an engineered biosynthetic pathway in Escherichia coli that yields erythromycin analogs from simple synthetic precursors. Multiple rounds of mutagenesis and screening led to the identification of new mutant strains with improved efficiency for precursor directed biosynthesis. Genetic and biochemical analysis suggested that the phenotypically relevant alterations in these mutant strains were localized exclusively to the host-vector system, and not to the polyketide synthase. We also demonstrate the utility of this improved system through engineered biosynthesis of a novel alkynyl erythromycin derivative with comparable antibacterial activity to its natural counterpart. In addition to reinforcing the power of directed evolution for engineering macrolide biosynthesis, our studies have identified a new lead substance for investigating structure-function relationships in the bacterial ribosome.