Cargando…
Inhibition of Nox2 Oxidase Activity Ameliorates Influenza A Virus-Induced Lung Inflammation
Influenza A virus pandemics and emerging anti-viral resistance highlight the urgent need for novel generic pharmacological strategies that reduce both viral replication and lung inflammation. We investigated whether the primary enzymatic source of inflammatory cell ROS (reactive oxygen species), Nox...
Autores principales: | , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3033375/ https://www.ncbi.nlm.nih.gov/pubmed/21304882 http://dx.doi.org/10.1371/journal.ppat.1001271 |
_version_ | 1782197570403041280 |
---|---|
author | Vlahos, Ross Stambas, John Bozinovski, Steven Broughton, Brad R. S. Drummond, Grant R. Selemidis, Stavros |
author_facet | Vlahos, Ross Stambas, John Bozinovski, Steven Broughton, Brad R. S. Drummond, Grant R. Selemidis, Stavros |
author_sort | Vlahos, Ross |
collection | PubMed |
description | Influenza A virus pandemics and emerging anti-viral resistance highlight the urgent need for novel generic pharmacological strategies that reduce both viral replication and lung inflammation. We investigated whether the primary enzymatic source of inflammatory cell ROS (reactive oxygen species), Nox2-containing NADPH oxidase, is a novel pharmacological target against the lung inflammation caused by influenza A viruses. Male WT (C57BL/6) and Nox2(−/y) mice were infected intranasally with low pathogenicity (X-31, H3N2) or higher pathogenicity (PR8, H1N1) influenza A virus. Viral titer, airways inflammation, superoxide and peroxynitrite production, lung histopathology, pro-inflammatory (MCP-1) and antiviral (IL-1β) cytokines/chemokines, CD8(+) T cell effector function and alveolar epithelial cell apoptosis were assessed. Infection of Nox2(−/y) mice with X-31 virus resulted in a significant reduction in viral titers, BALF macrophages, peri-bronchial inflammation, BALF inflammatory cell superoxide and lung tissue peroxynitrite production, MCP-1 levels and alveolar epithelial cell apoptosis when compared to WT control mice. Lung levels of IL-1β were ∼3-fold higher in Nox2(−/y) mice. The numbers of influenza-specific CD8+D(b)NP(366)+ and D(b)PA(224)+ T cells in the BALF and spleen were comparable in WT and Nox2(−/y) mice. In vivo administration of the Nox2 inhibitor apocynin significantly suppressed viral titer, airways inflammation and inflammatory cell superoxide production following infection with X-31 or PR8. In conclusion, these findings indicate that Nox2 inhibitors have therapeutic potential for control of lung inflammation and damage in an influenza strain-independent manner. |
format | Text |
id | pubmed-3033375 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-30333752011-02-08 Inhibition of Nox2 Oxidase Activity Ameliorates Influenza A Virus-Induced Lung Inflammation Vlahos, Ross Stambas, John Bozinovski, Steven Broughton, Brad R. S. Drummond, Grant R. Selemidis, Stavros PLoS Pathog Research Article Influenza A virus pandemics and emerging anti-viral resistance highlight the urgent need for novel generic pharmacological strategies that reduce both viral replication and lung inflammation. We investigated whether the primary enzymatic source of inflammatory cell ROS (reactive oxygen species), Nox2-containing NADPH oxidase, is a novel pharmacological target against the lung inflammation caused by influenza A viruses. Male WT (C57BL/6) and Nox2(−/y) mice were infected intranasally with low pathogenicity (X-31, H3N2) or higher pathogenicity (PR8, H1N1) influenza A virus. Viral titer, airways inflammation, superoxide and peroxynitrite production, lung histopathology, pro-inflammatory (MCP-1) and antiviral (IL-1β) cytokines/chemokines, CD8(+) T cell effector function and alveolar epithelial cell apoptosis were assessed. Infection of Nox2(−/y) mice with X-31 virus resulted in a significant reduction in viral titers, BALF macrophages, peri-bronchial inflammation, BALF inflammatory cell superoxide and lung tissue peroxynitrite production, MCP-1 levels and alveolar epithelial cell apoptosis when compared to WT control mice. Lung levels of IL-1β were ∼3-fold higher in Nox2(−/y) mice. The numbers of influenza-specific CD8+D(b)NP(366)+ and D(b)PA(224)+ T cells in the BALF and spleen were comparable in WT and Nox2(−/y) mice. In vivo administration of the Nox2 inhibitor apocynin significantly suppressed viral titer, airways inflammation and inflammatory cell superoxide production following infection with X-31 or PR8. In conclusion, these findings indicate that Nox2 inhibitors have therapeutic potential for control of lung inflammation and damage in an influenza strain-independent manner. Public Library of Science 2011-02-03 /pmc/articles/PMC3033375/ /pubmed/21304882 http://dx.doi.org/10.1371/journal.ppat.1001271 Text en Vlahos et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Vlahos, Ross Stambas, John Bozinovski, Steven Broughton, Brad R. S. Drummond, Grant R. Selemidis, Stavros Inhibition of Nox2 Oxidase Activity Ameliorates Influenza A Virus-Induced Lung Inflammation |
title | Inhibition of Nox2 Oxidase Activity Ameliorates Influenza A Virus-Induced Lung Inflammation |
title_full | Inhibition of Nox2 Oxidase Activity Ameliorates Influenza A Virus-Induced Lung Inflammation |
title_fullStr | Inhibition of Nox2 Oxidase Activity Ameliorates Influenza A Virus-Induced Lung Inflammation |
title_full_unstemmed | Inhibition of Nox2 Oxidase Activity Ameliorates Influenza A Virus-Induced Lung Inflammation |
title_short | Inhibition of Nox2 Oxidase Activity Ameliorates Influenza A Virus-Induced Lung Inflammation |
title_sort | inhibition of nox2 oxidase activity ameliorates influenza a virus-induced lung inflammation |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3033375/ https://www.ncbi.nlm.nih.gov/pubmed/21304882 http://dx.doi.org/10.1371/journal.ppat.1001271 |
work_keys_str_mv | AT vlahosross inhibitionofnox2oxidaseactivityamelioratesinfluenzaavirusinducedlunginflammation AT stambasjohn inhibitionofnox2oxidaseactivityamelioratesinfluenzaavirusinducedlunginflammation AT bozinovskisteven inhibitionofnox2oxidaseactivityamelioratesinfluenzaavirusinducedlunginflammation AT broughtonbradrs inhibitionofnox2oxidaseactivityamelioratesinfluenzaavirusinducedlunginflammation AT drummondgrantr inhibitionofnox2oxidaseactivityamelioratesinfluenzaavirusinducedlunginflammation AT selemidisstavros inhibitionofnox2oxidaseactivityamelioratesinfluenzaavirusinducedlunginflammation |