Cargando…

A novel small molecule target in human airway smooth muscle for potential treatment of obstructive lung diseases: a staged high-throughput biophysical screening

BACKGROUND: A newly identified mechanism of smooth muscle relaxation is the interaction between the small heat shock protein 20 (HSP20) and 14-3-3 proteins. Focusing upon this class of interactions, we describe here a novel drug target screening approach for treating airflow obstruction in asthma. M...

Descripción completa

Detalles Bibliográficos
Autores principales: An, Steven S, Askovich, Peter S, Zarembinski, Thomas I, Ahn, Kwangmi, Peltier, John M, von Rechenberg, Moritz, Sahasrabudhe, Sudhir, Fredberg, Jeffrey J
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3034681/
https://www.ncbi.nlm.nih.gov/pubmed/21232113
http://dx.doi.org/10.1186/1465-9921-12-8
Descripción
Sumario:BACKGROUND: A newly identified mechanism of smooth muscle relaxation is the interaction between the small heat shock protein 20 (HSP20) and 14-3-3 proteins. Focusing upon this class of interactions, we describe here a novel drug target screening approach for treating airflow obstruction in asthma. METHODS: Using a high-throughput fluorescence polarization (FP) assay, we screened a library of compounds that could act as small molecule modulators of HSP20 signals. We then applied two quantitative, cell-based biophysical methods to assess the functional efficacy of these molecules and rank-ordered their abilities to relax isolated human airway smooth muscle (ASM). Scaling up to the level of an intact tissue, we confirmed in a concentration-responsive manner the potency of the cell-based hit compounds. RESULTS: Among 58,019 compound tested, 268 compounds caused 20% or more reduction of the polarized emission in the FP assay. A small subset of these primary screen hits, belonging to two scaffolds, caused relaxation of isolated ASM cell in vitro and attenuated active force development of intact tissue ex vivo. CONCLUSIONS: This staged biophysical screening paradigm provides proof-of-principle for high-throughput and cost-effective discovery of new small molecule therapeutic agents for obstructive lung diseases.