Cargando…
Independent component and pathway-based analysis of miRNA-regulated gene expression in a model of type 1 diabetes
BACKGROUND: Several approaches have been developed for miRNA target prediction, including methods that incorporate expression profiling. However the methods are still in need of improvements due to a high false discovery rate. So far, none of the methods have used independent component analysis (ICA...
Autores principales: | , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3040732/ https://www.ncbi.nlm.nih.gov/pubmed/21294859 http://dx.doi.org/10.1186/1471-2164-12-97 |
_version_ | 1782198366080335872 |
---|---|
author | Bang-Berthelsen, Claus H Pedersen, Lykke Fløyel, Tina Hagedorn, Peter H Gylvin, Titus Pociot, Flemming |
author_facet | Bang-Berthelsen, Claus H Pedersen, Lykke Fløyel, Tina Hagedorn, Peter H Gylvin, Titus Pociot, Flemming |
author_sort | Bang-Berthelsen, Claus H |
collection | PubMed |
description | BACKGROUND: Several approaches have been developed for miRNA target prediction, including methods that incorporate expression profiling. However the methods are still in need of improvements due to a high false discovery rate. So far, none of the methods have used independent component analysis (ICA). Here, we developed a novel target prediction method based on ICA that incorporates both seed matching and expression profiling of miRNA and mRNA expressions. The method was applied on a cellular model of type 1 diabetes. RESULTS: Microrray profiling identified eight miRNAs (miR-124/128/192/194/204/375/672/708) with differential expression. Applying ICA on the mRNA profiling data revealed five significant independent components (ICs) correlating to the experimental conditions. The five ICs also captured the miRNA expressions by explaining >97% of their variance. By using ICA, seven of the eight miRNAs showed significant enrichment of sequence predicted targets, compared to only four miRNAs when using simple negative correlation. The ICs were enriched for miRNA targets that function in diabetes-relevant pathways e.g. type 1 and type 2 diabetes and maturity onset diabetes of the young (MODY). CONCLUSIONS: In this study, ICA was applied as an attempt to separate the various factors that influence the mRNA expression in order to identify miRNA targets. The results suggest that ICA is better at identifying miRNA targets than negative correlation. Additionally, combining ICA and pathway analysis constitutes a means for prioritizing between the predicted miRNA targets. Applying the method on a model of type 1 diabetes resulted in identification of eight miRNAs that appear to affect pathways of relevance to disease mechanisms in diabetes. |
format | Text |
id | pubmed-3040732 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-30407322011-02-24 Independent component and pathway-based analysis of miRNA-regulated gene expression in a model of type 1 diabetes Bang-Berthelsen, Claus H Pedersen, Lykke Fløyel, Tina Hagedorn, Peter H Gylvin, Titus Pociot, Flemming BMC Genomics Research Article BACKGROUND: Several approaches have been developed for miRNA target prediction, including methods that incorporate expression profiling. However the methods are still in need of improvements due to a high false discovery rate. So far, none of the methods have used independent component analysis (ICA). Here, we developed a novel target prediction method based on ICA that incorporates both seed matching and expression profiling of miRNA and mRNA expressions. The method was applied on a cellular model of type 1 diabetes. RESULTS: Microrray profiling identified eight miRNAs (miR-124/128/192/194/204/375/672/708) with differential expression. Applying ICA on the mRNA profiling data revealed five significant independent components (ICs) correlating to the experimental conditions. The five ICs also captured the miRNA expressions by explaining >97% of their variance. By using ICA, seven of the eight miRNAs showed significant enrichment of sequence predicted targets, compared to only four miRNAs when using simple negative correlation. The ICs were enriched for miRNA targets that function in diabetes-relevant pathways e.g. type 1 and type 2 diabetes and maturity onset diabetes of the young (MODY). CONCLUSIONS: In this study, ICA was applied as an attempt to separate the various factors that influence the mRNA expression in order to identify miRNA targets. The results suggest that ICA is better at identifying miRNA targets than negative correlation. Additionally, combining ICA and pathway analysis constitutes a means for prioritizing between the predicted miRNA targets. Applying the method on a model of type 1 diabetes resulted in identification of eight miRNAs that appear to affect pathways of relevance to disease mechanisms in diabetes. BioMed Central 2011-02-04 /pmc/articles/PMC3040732/ /pubmed/21294859 http://dx.doi.org/10.1186/1471-2164-12-97 Text en Copyright ©2011 Bang-Berthelsen et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Bang-Berthelsen, Claus H Pedersen, Lykke Fløyel, Tina Hagedorn, Peter H Gylvin, Titus Pociot, Flemming Independent component and pathway-based analysis of miRNA-regulated gene expression in a model of type 1 diabetes |
title | Independent component and pathway-based analysis of miRNA-regulated gene expression in a model of type 1 diabetes |
title_full | Independent component and pathway-based analysis of miRNA-regulated gene expression in a model of type 1 diabetes |
title_fullStr | Independent component and pathway-based analysis of miRNA-regulated gene expression in a model of type 1 diabetes |
title_full_unstemmed | Independent component and pathway-based analysis of miRNA-regulated gene expression in a model of type 1 diabetes |
title_short | Independent component and pathway-based analysis of miRNA-regulated gene expression in a model of type 1 diabetes |
title_sort | independent component and pathway-based analysis of mirna-regulated gene expression in a model of type 1 diabetes |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3040732/ https://www.ncbi.nlm.nih.gov/pubmed/21294859 http://dx.doi.org/10.1186/1471-2164-12-97 |
work_keys_str_mv | AT bangberthelsenclaush independentcomponentandpathwaybasedanalysisofmirnaregulatedgeneexpressioninamodeloftype1diabetes AT pedersenlykke independentcomponentandpathwaybasedanalysisofmirnaregulatedgeneexpressioninamodeloftype1diabetes AT fløyeltina independentcomponentandpathwaybasedanalysisofmirnaregulatedgeneexpressioninamodeloftype1diabetes AT hagedornpeterh independentcomponentandpathwaybasedanalysisofmirnaregulatedgeneexpressioninamodeloftype1diabetes AT gylvintitus independentcomponentandpathwaybasedanalysisofmirnaregulatedgeneexpressioninamodeloftype1diabetes AT pociotflemming independentcomponentandpathwaybasedanalysisofmirnaregulatedgeneexpressioninamodeloftype1diabetes |