Cargando…
Co-transcriptional RNA cleavage provides a failsafe termination mechanism for yeast RNA polymerase I
Ribosomal RNA, transcribed by RNA polymerase (Pol) I, accounts for most cellular RNA. Since Pol I transcribes rDNA repeats with high processivity and polymerase density, transcription termination is a critical process. Early in vitro studies proposed polymerase pausing by Reb1 and transcript release...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3045592/ https://www.ncbi.nlm.nih.gov/pubmed/20972219 http://dx.doi.org/10.1093/nar/gkq894 |
Sumario: | Ribosomal RNA, transcribed by RNA polymerase (Pol) I, accounts for most cellular RNA. Since Pol I transcribes rDNA repeats with high processivity and polymerase density, transcription termination is a critical process. Early in vitro studies proposed polymerase pausing by Reb1 and transcript release at the T-rich element T1 determined transcription termination. However recent in vivo studies revealed a ‘torpedo’ mechanism for Pol I termination: co-transcriptional RNA cleavage by Rnt1 provides an entry site for the 5′–3′ exonuclease Rat1 that degrades Pol I-associated transcripts destabilizing the transcription complex. Significantly Rnt1 inactivation in vivo reveals a second co-transcriptional RNA cleavage event at T1 which provides Pol I with an alternative termination pathway. An intact Reb1-binding site is also required for Rnt1-independent termination. Consequently our results reconcile the original Reb1-mediated termination pathway as part of a failsafe mechanism for this essential transcription process. |
---|