Cargando…
A machine learning approach for genome-wide prediction of morbid and druggable human genes based on systems-level data
BACKGROUND: The genome-wide identification of both morbid genes, i.e., those genes whose mutations cause hereditary human diseases, and druggable genes, i.e., genes coding for proteins whose modulation by small molecules elicits phenotypic effects, requires experimental approaches that are time-cons...
Autores principales: | Costa, Pedro R, Acencio, Marcio L, Lemke, Ney |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3045802/ https://www.ncbi.nlm.nih.gov/pubmed/21210975 http://dx.doi.org/10.1186/1471-2164-11-S5-S9 |
Ejemplares similares
-
Prediction of Druggable Proteins Using Machine Learning and Systems Biology: A Mini-Review
por: Kandoi, Gaurav, et al.
Publicado: (2015) -
Predicting Essential Genes and Proteins Based on Machine Learning and Network Topological Features: A Comprehensive Review
por: Zhang, Xue, et al.
Publicado: (2016) -
Corrigendum: Predicting Essential Genes and Proteins Based on Machine Learning and Network Topological Features: A Comprehensive Review
por: Zhang, Xue, et al.
Publicado: (2016) -
Cooperative RNA Polymerase Molecules Behavior on a Stochastic Sequence-Dependent Model for Transcription Elongation
por: Costa, Pedro Rafael, et al.
Publicado: (2013) -
Towards the prediction of essential genes by integration of network topology, cellular localization and biological process information
por: Acencio, Marcio L, et al.
Publicado: (2009)