Cargando…

Genomic and Proteomic Analysis of the Impact of Mitotic Quiescence on the Engraftment of Human CD34(+) Cells

It is well established that in adults, long-term repopulating hematopoietic stem cells (HSC) are mitotically quiescent cells that reside in specialized bone marrow (BM) niches that maintain the dormancy of HSC. Our laboratory demonstrated that the engraftment potential of human HSC (CD34(+) cells) f...

Descripción completa

Detalles Bibliográficos
Autores principales: Chitteti, Brahmananda Reddy, Liu, Yunlong, Srour, Edward F.
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3049784/
https://www.ncbi.nlm.nih.gov/pubmed/21408179
http://dx.doi.org/10.1371/journal.pone.0017498
_version_ 1782199274173366272
author Chitteti, Brahmananda Reddy
Liu, Yunlong
Srour, Edward F.
author_facet Chitteti, Brahmananda Reddy
Liu, Yunlong
Srour, Edward F.
author_sort Chitteti, Brahmananda Reddy
collection PubMed
description It is well established that in adults, long-term repopulating hematopoietic stem cells (HSC) are mitotically quiescent cells that reside in specialized bone marrow (BM) niches that maintain the dormancy of HSC. Our laboratory demonstrated that the engraftment potential of human HSC (CD34(+) cells) from BM and mobilized peripheral blood (MPB) is restricted to cells in the G0 phase of cell cycle but that in the case of umbilical cord blood (UCB) -derived CD34(+) cells, cell cycle status is not a determining factor in the ability of these cells to engraft and sustain hematopoiesis. We used this distinct in vivo behavior of CD34(+) cells from these tissues to identify genes associated with the engraftment potential of human HSC. CD34(+) cells from BM, MPB, and UCB were fractionated into G0 and G1 phases of cell cycle and subjected in parallel to microarray and proteomic analyses. A total of 484 target genes were identified to be associated with engraftment potential of HSC. System biology modeling indicated that the top four signaling pathways associated with these genes are Integrin signaling, p53 signaling, cytotoxic T lymphocyte-mediated apoptosis, and Myc mediated apoptosis signaling. Our data suggest that a continuum of functions of hematopoietic cells directly associated with cell cycle progression may play a major role in governing the engraftment potential of stem cells. While proteomic analysis identified a total of 646 proteins in analyzed samples, a very limited overlap between genomic and proteomic data was observed. These data provide a new insight into the genetic control of engraftment of human HSC from distinct tissues and suggest that mitotic quiescence may not be the requisite characteristic of engrafting stem cells, but instead may be the physiologic status conducive to the expression of genetic elements favoring engraftment.
format Text
id pubmed-3049784
institution National Center for Biotechnology Information
language English
publishDate 2011
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-30497842011-03-15 Genomic and Proteomic Analysis of the Impact of Mitotic Quiescence on the Engraftment of Human CD34(+) Cells Chitteti, Brahmananda Reddy Liu, Yunlong Srour, Edward F. PLoS One Research Article It is well established that in adults, long-term repopulating hematopoietic stem cells (HSC) are mitotically quiescent cells that reside in specialized bone marrow (BM) niches that maintain the dormancy of HSC. Our laboratory demonstrated that the engraftment potential of human HSC (CD34(+) cells) from BM and mobilized peripheral blood (MPB) is restricted to cells in the G0 phase of cell cycle but that in the case of umbilical cord blood (UCB) -derived CD34(+) cells, cell cycle status is not a determining factor in the ability of these cells to engraft and sustain hematopoiesis. We used this distinct in vivo behavior of CD34(+) cells from these tissues to identify genes associated with the engraftment potential of human HSC. CD34(+) cells from BM, MPB, and UCB were fractionated into G0 and G1 phases of cell cycle and subjected in parallel to microarray and proteomic analyses. A total of 484 target genes were identified to be associated with engraftment potential of HSC. System biology modeling indicated that the top four signaling pathways associated with these genes are Integrin signaling, p53 signaling, cytotoxic T lymphocyte-mediated apoptosis, and Myc mediated apoptosis signaling. Our data suggest that a continuum of functions of hematopoietic cells directly associated with cell cycle progression may play a major role in governing the engraftment potential of stem cells. While proteomic analysis identified a total of 646 proteins in analyzed samples, a very limited overlap between genomic and proteomic data was observed. These data provide a new insight into the genetic control of engraftment of human HSC from distinct tissues and suggest that mitotic quiescence may not be the requisite characteristic of engrafting stem cells, but instead may be the physiologic status conducive to the expression of genetic elements favoring engraftment. Public Library of Science 2011-03-07 /pmc/articles/PMC3049784/ /pubmed/21408179 http://dx.doi.org/10.1371/journal.pone.0017498 Text en Chitteti et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Chitteti, Brahmananda Reddy
Liu, Yunlong
Srour, Edward F.
Genomic and Proteomic Analysis of the Impact of Mitotic Quiescence on the Engraftment of Human CD34(+) Cells
title Genomic and Proteomic Analysis of the Impact of Mitotic Quiescence on the Engraftment of Human CD34(+) Cells
title_full Genomic and Proteomic Analysis of the Impact of Mitotic Quiescence on the Engraftment of Human CD34(+) Cells
title_fullStr Genomic and Proteomic Analysis of the Impact of Mitotic Quiescence on the Engraftment of Human CD34(+) Cells
title_full_unstemmed Genomic and Proteomic Analysis of the Impact of Mitotic Quiescence on the Engraftment of Human CD34(+) Cells
title_short Genomic and Proteomic Analysis of the Impact of Mitotic Quiescence on the Engraftment of Human CD34(+) Cells
title_sort genomic and proteomic analysis of the impact of mitotic quiescence on the engraftment of human cd34(+) cells
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3049784/
https://www.ncbi.nlm.nih.gov/pubmed/21408179
http://dx.doi.org/10.1371/journal.pone.0017498
work_keys_str_mv AT chittetibrahmanandareddy genomicandproteomicanalysisoftheimpactofmitoticquiescenceontheengraftmentofhumancd34cells
AT liuyunlong genomicandproteomicanalysisoftheimpactofmitoticquiescenceontheengraftmentofhumancd34cells
AT srouredwardf genomicandproteomicanalysisoftheimpactofmitoticquiescenceontheengraftmentofhumancd34cells