Cargando…
Critical Role of the Rb Family in Myoblast Survival and Fusion
The tumor suppressor Rb is thought to control cell proliferation, survival and differentiation. We recently showed that differentiating Rb-deficient mouse myoblasts can fuse to form short myotubes that quickly collapse through a mechanism involving autophagy, and that autophagy inhibitors or hypoxia...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3053373/ https://www.ncbi.nlm.nih.gov/pubmed/21423694 http://dx.doi.org/10.1371/journal.pone.0017682 |
_version_ | 1782199735159881728 |
---|---|
author | Ciavarra, Giovanni Ho, Andrew T. Cobrinik, David Zacksenhaus, Eldad |
author_facet | Ciavarra, Giovanni Ho, Andrew T. Cobrinik, David Zacksenhaus, Eldad |
author_sort | Ciavarra, Giovanni |
collection | PubMed |
description | The tumor suppressor Rb is thought to control cell proliferation, survival and differentiation. We recently showed that differentiating Rb-deficient mouse myoblasts can fuse to form short myotubes that quickly collapse through a mechanism involving autophagy, and that autophagy inhibitors or hypoxia could rescue the defect leading to long, twitching myotubes. Here we determined the contribution of pRb relatives, p107 and p130, to this process. We show that chronic or acute inactivation of Rb plus p107 or p130 increased myoblast cell death and reduced myotube formation relative to Rb loss alone. Treatment with autophagy antagonists or hypoxia extended survival of double-knockout myotubes, which appeared indistinguishable from control fibers. In contrast, triple mutations in Rb, p107 and p130, led to substantial increase in myoblast death and to elongated bi-nuclear myocytes, which seem to derive from nuclear duplication, as opposed to cell fusion. Under hypoxia, some rare, abnormally thin triple knockout myotubes survived and twitched. Thus, mutation of p107 or p130 reduces survival of Rb-deficient myoblasts during differentiation but does not preclude myoblast fusion or necessitate myotube degeneration, whereas combined inactivation of the entire Rb family produces a distinct phenotype, with drastically impaired myoblast fusion and survival. |
format | Text |
id | pubmed-3053373 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-30533732011-03-18 Critical Role of the Rb Family in Myoblast Survival and Fusion Ciavarra, Giovanni Ho, Andrew T. Cobrinik, David Zacksenhaus, Eldad PLoS One Research Article The tumor suppressor Rb is thought to control cell proliferation, survival and differentiation. We recently showed that differentiating Rb-deficient mouse myoblasts can fuse to form short myotubes that quickly collapse through a mechanism involving autophagy, and that autophagy inhibitors or hypoxia could rescue the defect leading to long, twitching myotubes. Here we determined the contribution of pRb relatives, p107 and p130, to this process. We show that chronic or acute inactivation of Rb plus p107 or p130 increased myoblast cell death and reduced myotube formation relative to Rb loss alone. Treatment with autophagy antagonists or hypoxia extended survival of double-knockout myotubes, which appeared indistinguishable from control fibers. In contrast, triple mutations in Rb, p107 and p130, led to substantial increase in myoblast death and to elongated bi-nuclear myocytes, which seem to derive from nuclear duplication, as opposed to cell fusion. Under hypoxia, some rare, abnormally thin triple knockout myotubes survived and twitched. Thus, mutation of p107 or p130 reduces survival of Rb-deficient myoblasts during differentiation but does not preclude myoblast fusion or necessitate myotube degeneration, whereas combined inactivation of the entire Rb family produces a distinct phenotype, with drastically impaired myoblast fusion and survival. Public Library of Science 2011-03-10 /pmc/articles/PMC3053373/ /pubmed/21423694 http://dx.doi.org/10.1371/journal.pone.0017682 Text en Ciavarra et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Ciavarra, Giovanni Ho, Andrew T. Cobrinik, David Zacksenhaus, Eldad Critical Role of the Rb Family in Myoblast Survival and Fusion |
title | Critical Role of the Rb Family in Myoblast Survival and Fusion |
title_full | Critical Role of the Rb Family in Myoblast Survival and Fusion |
title_fullStr | Critical Role of the Rb Family in Myoblast Survival and Fusion |
title_full_unstemmed | Critical Role of the Rb Family in Myoblast Survival and Fusion |
title_short | Critical Role of the Rb Family in Myoblast Survival and Fusion |
title_sort | critical role of the rb family in myoblast survival and fusion |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3053373/ https://www.ncbi.nlm.nih.gov/pubmed/21423694 http://dx.doi.org/10.1371/journal.pone.0017682 |
work_keys_str_mv | AT ciavarragiovanni criticalroleoftherbfamilyinmyoblastsurvivalandfusion AT hoandrewt criticalroleoftherbfamilyinmyoblastsurvivalandfusion AT cobrinikdavid criticalroleoftherbfamilyinmyoblastsurvivalandfusion AT zacksenhauseldad criticalroleoftherbfamilyinmyoblastsurvivalandfusion |