Cargando…

Structure of a nanobody-stabilized active state of the β(2) adrenoceptor

G protein coupled receptors (GPCRs) exhibit a spectrum of functional behaviors in response to natural and synthetic ligands. Recent crystal structures provide insights into inactive states of several GPCRs. Efforts to obtain an agonist-bound active-state GPCR structure have proven difficult due to t...

Descripción completa

Detalles Bibliográficos
Autores principales: Rasmussen, Søren G. F., Choi, Hee-Jung, Fung, Juan Jose, Pardon, Els, Casarosa, Paola, Chae, Pil Seok, DeVree, Brian T., Rosenbaum, Daniel M., Thian, Foon Sun, Kobilka, Tong Sun, Schnapp, Andreas, Konetzki, Ingo, Sunahara, Roger K., Gellman, Samuel H., Pautsch, Alexander, Steyaert, Jan, Weis, William I., Kobilka, Brian K.
Formato: Texto
Lenguaje:English
Publicado: 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3058308/
https://www.ncbi.nlm.nih.gov/pubmed/21228869
http://dx.doi.org/10.1038/nature09648
_version_ 1782200357001101312
author Rasmussen, Søren G. F.
Choi, Hee-Jung
Fung, Juan Jose
Pardon, Els
Casarosa, Paola
Chae, Pil Seok
DeVree, Brian T.
Rosenbaum, Daniel M.
Thian, Foon Sun
Kobilka, Tong Sun
Schnapp, Andreas
Konetzki, Ingo
Sunahara, Roger K.
Gellman, Samuel H.
Pautsch, Alexander
Steyaert, Jan
Weis, William I.
Kobilka, Brian K.
author_facet Rasmussen, Søren G. F.
Choi, Hee-Jung
Fung, Juan Jose
Pardon, Els
Casarosa, Paola
Chae, Pil Seok
DeVree, Brian T.
Rosenbaum, Daniel M.
Thian, Foon Sun
Kobilka, Tong Sun
Schnapp, Andreas
Konetzki, Ingo
Sunahara, Roger K.
Gellman, Samuel H.
Pautsch, Alexander
Steyaert, Jan
Weis, William I.
Kobilka, Brian K.
author_sort Rasmussen, Søren G. F.
collection PubMed
description G protein coupled receptors (GPCRs) exhibit a spectrum of functional behaviors in response to natural and synthetic ligands. Recent crystal structures provide insights into inactive states of several GPCRs. Efforts to obtain an agonist-bound active-state GPCR structure have proven difficult due to the inherent instability of this state in the absence of a G protein. We generated a camelid antibody fragment (nanobody) to the human β(2) adrenergic receptor (β(2)AR) that exhibits G protein-like behavior, and obtained an agonist-bound, active-state crystal structure of the receptor-nanobody complex. Comparison with the inactive β(2)AR structure reveals subtle changes in the binding pocket; however, these small changes are associated with an 11Å outward movement of the cytoplasmic end of transmembrane segment 6, and rearrangements of transmembrane segments 5 and 7 that are remarkably similar to those observed in opsin, an active form of rhodopsin. This structure provides insights into the process of agonist binding and activation.
format Text
id pubmed-3058308
institution National Center for Biotechnology Information
language English
publishDate 2011
record_format MEDLINE/PubMed
spelling pubmed-30583082011-07-13 Structure of a nanobody-stabilized active state of the β(2) adrenoceptor Rasmussen, Søren G. F. Choi, Hee-Jung Fung, Juan Jose Pardon, Els Casarosa, Paola Chae, Pil Seok DeVree, Brian T. Rosenbaum, Daniel M. Thian, Foon Sun Kobilka, Tong Sun Schnapp, Andreas Konetzki, Ingo Sunahara, Roger K. Gellman, Samuel H. Pautsch, Alexander Steyaert, Jan Weis, William I. Kobilka, Brian K. Nature Article G protein coupled receptors (GPCRs) exhibit a spectrum of functional behaviors in response to natural and synthetic ligands. Recent crystal structures provide insights into inactive states of several GPCRs. Efforts to obtain an agonist-bound active-state GPCR structure have proven difficult due to the inherent instability of this state in the absence of a G protein. We generated a camelid antibody fragment (nanobody) to the human β(2) adrenergic receptor (β(2)AR) that exhibits G protein-like behavior, and obtained an agonist-bound, active-state crystal structure of the receptor-nanobody complex. Comparison with the inactive β(2)AR structure reveals subtle changes in the binding pocket; however, these small changes are associated with an 11Å outward movement of the cytoplasmic end of transmembrane segment 6, and rearrangements of transmembrane segments 5 and 7 that are remarkably similar to those observed in opsin, an active form of rhodopsin. This structure provides insights into the process of agonist binding and activation. 2011-01-13 /pmc/articles/PMC3058308/ /pubmed/21228869 http://dx.doi.org/10.1038/nature09648 Text en Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms
spellingShingle Article
Rasmussen, Søren G. F.
Choi, Hee-Jung
Fung, Juan Jose
Pardon, Els
Casarosa, Paola
Chae, Pil Seok
DeVree, Brian T.
Rosenbaum, Daniel M.
Thian, Foon Sun
Kobilka, Tong Sun
Schnapp, Andreas
Konetzki, Ingo
Sunahara, Roger K.
Gellman, Samuel H.
Pautsch, Alexander
Steyaert, Jan
Weis, William I.
Kobilka, Brian K.
Structure of a nanobody-stabilized active state of the β(2) adrenoceptor
title Structure of a nanobody-stabilized active state of the β(2) adrenoceptor
title_full Structure of a nanobody-stabilized active state of the β(2) adrenoceptor
title_fullStr Structure of a nanobody-stabilized active state of the β(2) adrenoceptor
title_full_unstemmed Structure of a nanobody-stabilized active state of the β(2) adrenoceptor
title_short Structure of a nanobody-stabilized active state of the β(2) adrenoceptor
title_sort structure of a nanobody-stabilized active state of the β(2) adrenoceptor
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3058308/
https://www.ncbi.nlm.nih.gov/pubmed/21228869
http://dx.doi.org/10.1038/nature09648
work_keys_str_mv AT rasmussensørengf structureofananobodystabilizedactivestateoftheb2adrenoceptor
AT choiheejung structureofananobodystabilizedactivestateoftheb2adrenoceptor
AT fungjuanjose structureofananobodystabilizedactivestateoftheb2adrenoceptor
AT pardonels structureofananobodystabilizedactivestateoftheb2adrenoceptor
AT casarosapaola structureofananobodystabilizedactivestateoftheb2adrenoceptor
AT chaepilseok structureofananobodystabilizedactivestateoftheb2adrenoceptor
AT devreebriant structureofananobodystabilizedactivestateoftheb2adrenoceptor
AT rosenbaumdanielm structureofananobodystabilizedactivestateoftheb2adrenoceptor
AT thianfoonsun structureofananobodystabilizedactivestateoftheb2adrenoceptor
AT kobilkatongsun structureofananobodystabilizedactivestateoftheb2adrenoceptor
AT schnappandreas structureofananobodystabilizedactivestateoftheb2adrenoceptor
AT konetzkiingo structureofananobodystabilizedactivestateoftheb2adrenoceptor
AT sunahararogerk structureofananobodystabilizedactivestateoftheb2adrenoceptor
AT gellmansamuelh structureofananobodystabilizedactivestateoftheb2adrenoceptor
AT pautschalexander structureofananobodystabilizedactivestateoftheb2adrenoceptor
AT steyaertjan structureofananobodystabilizedactivestateoftheb2adrenoceptor
AT weiswilliami structureofananobodystabilizedactivestateoftheb2adrenoceptor
AT kobilkabriank structureofananobodystabilizedactivestateoftheb2adrenoceptor