Cargando…
Diet-Induced Adipose Tissue Inflammation and Liver Steatosis Are Prevented by DPP-4 Inhibition in Diabetic Mice
OBJECTIVE: Diet composition alters the metabolic states of adipocytes and hepatocytes in diabetes. The effects of dipeptidyl peptidase-4 (DPP-4) inhibition on adipose tissue inflammation and fatty liver have been obscure. We investigated the extrapancreatic effects of DPP-4 inhibition on visceral fa...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
American Diabetes Association
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3064098/ https://www.ncbi.nlm.nih.gov/pubmed/21330637 http://dx.doi.org/10.2337/db10-1338 |
Sumario: | OBJECTIVE: Diet composition alters the metabolic states of adipocytes and hepatocytes in diabetes. The effects of dipeptidyl peptidase-4 (DPP-4) inhibition on adipose tissue inflammation and fatty liver have been obscure. We investigated the extrapancreatic effects of DPP-4 inhibition on visceral fat and the liver. RESEARCH DESIGN AND METHODS: We investigated diet-induced metabolic changes in β-cell–specific glucokinase haploinsufficient (Gck(+/−)) diabetic mice. We challenged animals with a diet containing a combination of sucrose and oleic acid (SO) or sucrose and linoleic acid (SL). Next, we assessed the effects of a DPP-4 inhibitor, des-fluoro-sitagliptin, on adipose tissue inflammation and hepatic steatosis. RESULTS: The epididymal fat weight and serum leptin level were significantly higher in Gck(+/−) mice fed SL than in mice fed SO, although no significant differences in body weight or adipocyte size were noted. Compared with SO, SL increased the numbers of CD11c(+) M1 macrophages and CD8(+) T-cells in visceral adipose tissue and the expression of E-selectin, P-selectin, and plasminogen activator inhibitor-1 (PAI-1). DPP-4 inhibition significantly prevented adipose tissue infiltration by CD8(+) T-cells and M1 macrophages and decreased the expression of PAI-1. The production of cytokines by activated T-cells was not affected by DPP-4 inhibition. Furthermore, DPP-4 inhibition prevented fatty liver in both wild-type and Gck(+/−) mice. DPP-4 inhibition also decreased the expressions of sterol regulatory element–binding protein-1c, stearoyl-CoA desaturase-1, and fatty acid synthase, and increased the expression of peroxisome proliferator–activated receptor-α in the liver. CONCLUSIONS: Our findings indicated that DPP-4 inhibition has extrapancreatic protective effects against diet-induced adipose tissue inflammation and hepatic steatosis. |
---|