Cargando…
Enhancement of Naringenin Bioavailability by Complexation with Hydroxypropoyl-β-Cyclodextrin
The abundant flavonoid aglycone, naringenin, which is responsible for the bitter taste in grapefruits, has been shown to possess hypolipidemic and anti-inflammatory effects both in vitro and in vivo. Recently, our group demonstrated that naringenin inhibits hepatitis C virus (HCV) production, while...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3071816/ https://www.ncbi.nlm.nih.gov/pubmed/21494673 http://dx.doi.org/10.1371/journal.pone.0018033 |
_version_ | 1782201476062380032 |
---|---|
author | Shulman, Maria Cohen, Merav Soto-Gutierrez, Alejandro Yagi, Hiroshi Wang, Hongyun Goldwasser, Jonathan Lee-Parsons, Carolyn W. Benny-Ratsaby, Ofra Yarmush, Martin L. Nahmias, Yaakov |
author_facet | Shulman, Maria Cohen, Merav Soto-Gutierrez, Alejandro Yagi, Hiroshi Wang, Hongyun Goldwasser, Jonathan Lee-Parsons, Carolyn W. Benny-Ratsaby, Ofra Yarmush, Martin L. Nahmias, Yaakov |
author_sort | Shulman, Maria |
collection | PubMed |
description | The abundant flavonoid aglycone, naringenin, which is responsible for the bitter taste in grapefruits, has been shown to possess hypolipidemic and anti-inflammatory effects both in vitro and in vivo. Recently, our group demonstrated that naringenin inhibits hepatitis C virus (HCV) production, while others demonstrated its potential in the treatment of hyperlipidemia and diabetes. However, naringenin suffers from low oral bioavailability critically limiting its clinical potential. In this study, we demonstrate that the solubility of naringenin is enhanced by complexation with β-cyclodextrin, an FDA approved excipient. Hydroxypropoyl-β-cyclodextrin (HPβCD), specifically, increased the solubility of naringenin by over 400-fold, and its transport across a Caco-2 model of the gut epithelium by 11-fold. Complexation of naringenin with HPβCD increased its plasma concentrations when fed to rats, with AUC values increasing by 7.4-fold and C(max) increasing 14.6-fold. Moreover, when the complex was administered just prior to a meal it decreased VLDL levels by 42% and increased the rate of glucose clearance by 64% compared to naringenin alone. These effects correlated with increased expression of the PPAR co-activator, PGC1α in both liver and skeletal muscle. Histology and blood chemistry analysis indicated this route of administration was not associated with damage to the intestine, kidney, or liver. These results suggest that the complexation of naringenin with HPβCD is a viable option for the oral delivery of naringenin as a therapeutic entity with applications in the treatment of dyslipidemia, diabetes, and HCV infection. |
format | Text |
id | pubmed-3071816 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-30718162011-04-14 Enhancement of Naringenin Bioavailability by Complexation with Hydroxypropoyl-β-Cyclodextrin Shulman, Maria Cohen, Merav Soto-Gutierrez, Alejandro Yagi, Hiroshi Wang, Hongyun Goldwasser, Jonathan Lee-Parsons, Carolyn W. Benny-Ratsaby, Ofra Yarmush, Martin L. Nahmias, Yaakov PLoS One Research Article The abundant flavonoid aglycone, naringenin, which is responsible for the bitter taste in grapefruits, has been shown to possess hypolipidemic and anti-inflammatory effects both in vitro and in vivo. Recently, our group demonstrated that naringenin inhibits hepatitis C virus (HCV) production, while others demonstrated its potential in the treatment of hyperlipidemia and diabetes. However, naringenin suffers from low oral bioavailability critically limiting its clinical potential. In this study, we demonstrate that the solubility of naringenin is enhanced by complexation with β-cyclodextrin, an FDA approved excipient. Hydroxypropoyl-β-cyclodextrin (HPβCD), specifically, increased the solubility of naringenin by over 400-fold, and its transport across a Caco-2 model of the gut epithelium by 11-fold. Complexation of naringenin with HPβCD increased its plasma concentrations when fed to rats, with AUC values increasing by 7.4-fold and C(max) increasing 14.6-fold. Moreover, when the complex was administered just prior to a meal it decreased VLDL levels by 42% and increased the rate of glucose clearance by 64% compared to naringenin alone. These effects correlated with increased expression of the PPAR co-activator, PGC1α in both liver and skeletal muscle. Histology and blood chemistry analysis indicated this route of administration was not associated with damage to the intestine, kidney, or liver. These results suggest that the complexation of naringenin with HPβCD is a viable option for the oral delivery of naringenin as a therapeutic entity with applications in the treatment of dyslipidemia, diabetes, and HCV infection. Public Library of Science 2011-04-06 /pmc/articles/PMC3071816/ /pubmed/21494673 http://dx.doi.org/10.1371/journal.pone.0018033 Text en Shulman et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Shulman, Maria Cohen, Merav Soto-Gutierrez, Alejandro Yagi, Hiroshi Wang, Hongyun Goldwasser, Jonathan Lee-Parsons, Carolyn W. Benny-Ratsaby, Ofra Yarmush, Martin L. Nahmias, Yaakov Enhancement of Naringenin Bioavailability by Complexation with Hydroxypropoyl-β-Cyclodextrin |
title | Enhancement of Naringenin Bioavailability by Complexation with Hydroxypropoyl-β-Cyclodextrin |
title_full | Enhancement of Naringenin Bioavailability by Complexation with Hydroxypropoyl-β-Cyclodextrin |
title_fullStr | Enhancement of Naringenin Bioavailability by Complexation with Hydroxypropoyl-β-Cyclodextrin |
title_full_unstemmed | Enhancement of Naringenin Bioavailability by Complexation with Hydroxypropoyl-β-Cyclodextrin |
title_short | Enhancement of Naringenin Bioavailability by Complexation with Hydroxypropoyl-β-Cyclodextrin |
title_sort | enhancement of naringenin bioavailability by complexation with hydroxypropoyl-β-cyclodextrin |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3071816/ https://www.ncbi.nlm.nih.gov/pubmed/21494673 http://dx.doi.org/10.1371/journal.pone.0018033 |
work_keys_str_mv | AT shulmanmaria enhancementofnaringeninbioavailabilitybycomplexationwithhydroxypropoylbcyclodextrin AT cohenmerav enhancementofnaringeninbioavailabilitybycomplexationwithhydroxypropoylbcyclodextrin AT sotogutierrezalejandro enhancementofnaringeninbioavailabilitybycomplexationwithhydroxypropoylbcyclodextrin AT yagihiroshi enhancementofnaringeninbioavailabilitybycomplexationwithhydroxypropoylbcyclodextrin AT wanghongyun enhancementofnaringeninbioavailabilitybycomplexationwithhydroxypropoylbcyclodextrin AT goldwasserjonathan enhancementofnaringeninbioavailabilitybycomplexationwithhydroxypropoylbcyclodextrin AT leeparsonscarolynw enhancementofnaringeninbioavailabilitybycomplexationwithhydroxypropoylbcyclodextrin AT bennyratsabyofra enhancementofnaringeninbioavailabilitybycomplexationwithhydroxypropoylbcyclodextrin AT yarmushmartinl enhancementofnaringeninbioavailabilitybycomplexationwithhydroxypropoylbcyclodextrin AT nahmiasyaakov enhancementofnaringeninbioavailabilitybycomplexationwithhydroxypropoylbcyclodextrin |