Cargando…

Targeting BRAF(V600E) with PLX4720 Displays Potent Antimigratory and Anti-invasive Activity in Preclinical Models of Human Thyroid Cancer

PURPOSE. B-Raf(V600E) may play a role in the progression from papillary thyroid cancer to anaplastic thyroid cancer (ATC). We tested the effects of a highly selective B-Raf(V600E) inhibitor, PLX4720, on proliferation, migration, and invasion both in human thyroid cancer cell lines (8505c(B-RafV600E)...

Descripción completa

Detalles Bibliográficos
Autores principales: Nucera, Carmelo, Nehs, Matthew A., Nagarkatti, Sushruta S., Sadow, Peter M., Mekel, Michal, Fischer, Andrew H., Lin, Paul S., Bollag, Gideon E., Lawler, Jack, Hodin, Richard A., Parangi, Sareh
Formato: Texto
Lenguaje:English
Publicado: AlphaMed Press 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3073446/
https://www.ncbi.nlm.nih.gov/pubmed/21355020
http://dx.doi.org/10.1634/theoncologist.2010-0317
_version_ 1782201633584709632
author Nucera, Carmelo
Nehs, Matthew A.
Nagarkatti, Sushruta S.
Sadow, Peter M.
Mekel, Michal
Fischer, Andrew H.
Lin, Paul S.
Bollag, Gideon E.
Lawler, Jack
Hodin, Richard A.
Parangi, Sareh
author_facet Nucera, Carmelo
Nehs, Matthew A.
Nagarkatti, Sushruta S.
Sadow, Peter M.
Mekel, Michal
Fischer, Andrew H.
Lin, Paul S.
Bollag, Gideon E.
Lawler, Jack
Hodin, Richard A.
Parangi, Sareh
author_sort Nucera, Carmelo
collection PubMed
description PURPOSE. B-Raf(V600E) may play a role in the progression from papillary thyroid cancer to anaplastic thyroid cancer (ATC). We tested the effects of a highly selective B-Raf(V600E) inhibitor, PLX4720, on proliferation, migration, and invasion both in human thyroid cancer cell lines (8505c(B-RafV600E) and TPC-1(RET/PTC-1 and wild-type B-Raf)) and in primary human normal thyroid (NT) follicular cells engineered with or without B-Raf(V600E). EXPERIMENTAL DESIGN. Large-scale genotyping analysis by mass spectrometry was performed in order to analyze >900 gene mutations. Cell proliferation and migration/invasion were performed upon PLX4720 treatment in 8505c, TPC-1, and NT cells. Orthotopic implantation of either 8505c or TPC-1 cells into the thyroid of severe combined immunodeficient mice was performed. Gene validations were performed by quantitative polymerase chain reaction and immunohistochemistry. RESULTS. We found that PLX4720 reduced in vitro cell proliferation and migration and invasion of 8505c cells, causing early downregulation of genes involved in tumor progression. PLX4720-treated NT cells overexpressing B-Raf(V600E) (heterozygous wild-type B-Raf/B-Raf(V600E)) showed significantly lower cell proliferation, migration, and invasion. PLX4720 treatment did not block cell invasion in TPC-1 cells with wild-type B-Raf, which showed very low and delayed in vivo tumor growth. In vivo, PLX4720 treatment of 8505c orthotopic thyroid tumors inhibited tumor aggressiveness and significantly upregulated the thyroid differentiation markers thyroid transcription factor 1 and paired box gene 8. CONCLUSIONS. Here, we have shown that PLX4720 preferentially inhibits migration and invasion of B-Raf(V600E) thyroid cancer cells and tumor aggressiveness. Normal thyroid cells were generated to be heterozygous for wild-type B-Raf/B-Raf(V600E), mimicking the condition found in most human thyroid cancers. PLX4720 was effective in reducing cell proliferation, migration, and invasion in this heterozygous model. PLX4720 therapy should be tested and considered for a phase I study for the treatment of patients with B-Raf(V600E) ATC.
format Text
id pubmed-3073446
institution National Center for Biotechnology Information
language English
publishDate 2011
publisher AlphaMed Press
record_format MEDLINE/PubMed
spelling pubmed-30734462012-02-25 Targeting BRAF(V600E) with PLX4720 Displays Potent Antimigratory and Anti-invasive Activity in Preclinical Models of Human Thyroid Cancer Nucera, Carmelo Nehs, Matthew A. Nagarkatti, Sushruta S. Sadow, Peter M. Mekel, Michal Fischer, Andrew H. Lin, Paul S. Bollag, Gideon E. Lawler, Jack Hodin, Richard A. Parangi, Sareh Oncologist Endocrinology PURPOSE. B-Raf(V600E) may play a role in the progression from papillary thyroid cancer to anaplastic thyroid cancer (ATC). We tested the effects of a highly selective B-Raf(V600E) inhibitor, PLX4720, on proliferation, migration, and invasion both in human thyroid cancer cell lines (8505c(B-RafV600E) and TPC-1(RET/PTC-1 and wild-type B-Raf)) and in primary human normal thyroid (NT) follicular cells engineered with or without B-Raf(V600E). EXPERIMENTAL DESIGN. Large-scale genotyping analysis by mass spectrometry was performed in order to analyze >900 gene mutations. Cell proliferation and migration/invasion were performed upon PLX4720 treatment in 8505c, TPC-1, and NT cells. Orthotopic implantation of either 8505c or TPC-1 cells into the thyroid of severe combined immunodeficient mice was performed. Gene validations were performed by quantitative polymerase chain reaction and immunohistochemistry. RESULTS. We found that PLX4720 reduced in vitro cell proliferation and migration and invasion of 8505c cells, causing early downregulation of genes involved in tumor progression. PLX4720-treated NT cells overexpressing B-Raf(V600E) (heterozygous wild-type B-Raf/B-Raf(V600E)) showed significantly lower cell proliferation, migration, and invasion. PLX4720 treatment did not block cell invasion in TPC-1 cells with wild-type B-Raf, which showed very low and delayed in vivo tumor growth. In vivo, PLX4720 treatment of 8505c orthotopic thyroid tumors inhibited tumor aggressiveness and significantly upregulated the thyroid differentiation markers thyroid transcription factor 1 and paired box gene 8. CONCLUSIONS. Here, we have shown that PLX4720 preferentially inhibits migration and invasion of B-Raf(V600E) thyroid cancer cells and tumor aggressiveness. Normal thyroid cells were generated to be heterozygous for wild-type B-Raf/B-Raf(V600E), mimicking the condition found in most human thyroid cancers. PLX4720 was effective in reducing cell proliferation, migration, and invasion in this heterozygous model. PLX4720 therapy should be tested and considered for a phase I study for the treatment of patients with B-Raf(V600E) ATC. AlphaMed Press 2011-03 2011-02-25 /pmc/articles/PMC3073446/ /pubmed/21355020 http://dx.doi.org/10.1634/theoncologist.2010-0317 Text en ©AlphaMed Press available online without subscription through the open access option.
spellingShingle Endocrinology
Nucera, Carmelo
Nehs, Matthew A.
Nagarkatti, Sushruta S.
Sadow, Peter M.
Mekel, Michal
Fischer, Andrew H.
Lin, Paul S.
Bollag, Gideon E.
Lawler, Jack
Hodin, Richard A.
Parangi, Sareh
Targeting BRAF(V600E) with PLX4720 Displays Potent Antimigratory and Anti-invasive Activity in Preclinical Models of Human Thyroid Cancer
title Targeting BRAF(V600E) with PLX4720 Displays Potent Antimigratory and Anti-invasive Activity in Preclinical Models of Human Thyroid Cancer
title_full Targeting BRAF(V600E) with PLX4720 Displays Potent Antimigratory and Anti-invasive Activity in Preclinical Models of Human Thyroid Cancer
title_fullStr Targeting BRAF(V600E) with PLX4720 Displays Potent Antimigratory and Anti-invasive Activity in Preclinical Models of Human Thyroid Cancer
title_full_unstemmed Targeting BRAF(V600E) with PLX4720 Displays Potent Antimigratory and Anti-invasive Activity in Preclinical Models of Human Thyroid Cancer
title_short Targeting BRAF(V600E) with PLX4720 Displays Potent Antimigratory and Anti-invasive Activity in Preclinical Models of Human Thyroid Cancer
title_sort targeting braf(v600e) with plx4720 displays potent antimigratory and anti-invasive activity in preclinical models of human thyroid cancer
topic Endocrinology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3073446/
https://www.ncbi.nlm.nih.gov/pubmed/21355020
http://dx.doi.org/10.1634/theoncologist.2010-0317
work_keys_str_mv AT nuceracarmelo targetingbrafv600ewithplx4720displayspotentantimigratoryandantiinvasiveactivityinpreclinicalmodelsofhumanthyroidcancer
AT nehsmatthewa targetingbrafv600ewithplx4720displayspotentantimigratoryandantiinvasiveactivityinpreclinicalmodelsofhumanthyroidcancer
AT nagarkattisushrutas targetingbrafv600ewithplx4720displayspotentantimigratoryandantiinvasiveactivityinpreclinicalmodelsofhumanthyroidcancer
AT sadowpeterm targetingbrafv600ewithplx4720displayspotentantimigratoryandantiinvasiveactivityinpreclinicalmodelsofhumanthyroidcancer
AT mekelmichal targetingbrafv600ewithplx4720displayspotentantimigratoryandantiinvasiveactivityinpreclinicalmodelsofhumanthyroidcancer
AT fischerandrewh targetingbrafv600ewithplx4720displayspotentantimigratoryandantiinvasiveactivityinpreclinicalmodelsofhumanthyroidcancer
AT linpauls targetingbrafv600ewithplx4720displayspotentantimigratoryandantiinvasiveactivityinpreclinicalmodelsofhumanthyroidcancer
AT bollaggideone targetingbrafv600ewithplx4720displayspotentantimigratoryandantiinvasiveactivityinpreclinicalmodelsofhumanthyroidcancer
AT lawlerjack targetingbrafv600ewithplx4720displayspotentantimigratoryandantiinvasiveactivityinpreclinicalmodelsofhumanthyroidcancer
AT hodinricharda targetingbrafv600ewithplx4720displayspotentantimigratoryandantiinvasiveactivityinpreclinicalmodelsofhumanthyroidcancer
AT parangisareh targetingbrafv600ewithplx4720displayspotentantimigratoryandantiinvasiveactivityinpreclinicalmodelsofhumanthyroidcancer