Cargando…

Activation of Nuclear Factor-kappa B signalling promotes cellular senescence

Cellular senescence is a program of irreversible cell cycle arrest that normal cells undergo in response to progressive shortening of telomeres, changes in telomeric structure, oncogene activation or oxidative stress. The underlying signalling pathways, of major clinicopathological relevance, are un...

Descripción completa

Detalles Bibliográficos
Autores principales: Rovillain, Emilie, Mansfield, Louise, Caetano, Catia, Alvarez-Fernandez, Monica, Caballero, Otavia L., Medema, Rene H., Hummerich, Holger, Jat, Parmjit S.
Formato: Texto
Lenguaje:English
Publicado: 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3080811/
https://www.ncbi.nlm.nih.gov/pubmed/21242976
http://dx.doi.org/10.1038/onc.2010.611
Descripción
Sumario:Cellular senescence is a program of irreversible cell cycle arrest that normal cells undergo in response to progressive shortening of telomeres, changes in telomeric structure, oncogene activation or oxidative stress. The underlying signalling pathways, of major clinicopathological relevance, are unknown. We combined genome-wide expression profiling with genetic complementation to identify genes that are differentially expressed when conditionally immortalised human fibroblasts undergo senescence upon activation of the p16-pRB and p53-p21 tumour suppressor pathways. This identified 816 up- and 961 down-regulated genes whose expression was reversed when senescence was bypassed. Overlay of this data set with the meta-signatures of genes up-regulated in cancer showed that nearly 50% of them were down-regulated upon senescence showing that even though overcoming senescence may only be one of the events required for malignant transformation, nearly half of the genes upregulated in cancer are related to it. Moreover 65 of the up- and 26 of the down-regulated genes are known downstream targets of NF-κB suggesting that senescence was associated with activation of the NF-κB pathway. Direct perturbation of this pathway bypasses growth arrest indicating that activation of NF-κB signalling has a causal role in promoting senescence.