Cargando…
Enhanced Statistical Tests for GWAS in Admixed Populations: Assessment using African Americans from CARe and a Breast Cancer Consortium
While genome-wide association studies (GWAS) have primarily examined populations of European ancestry, more recent studies often involve additional populations, including admixed populations such as African Americans and Latinos. In admixed populations, linkage disequilibrium (LD) exists both at a f...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3080860/ https://www.ncbi.nlm.nih.gov/pubmed/21541012 http://dx.doi.org/10.1371/journal.pgen.1001371 |
_version_ | 1782202154445963264 |
---|---|
author | Pasaniuc, Bogdan Zaitlen, Noah Lettre, Guillaume Chen, Gary K. Tandon, Arti Kao, W. H. Linda Ruczinski, Ingo Fornage, Myriam Siscovick, David S. Zhu, Xiaofeng Larkin, Emma Lange, Leslie A. Cupples, L. Adrienne Yang, Qiong Akylbekova, Ermeg L. Musani, Solomon K. Divers, Jasmin Mychaleckyj, Joe Li, Mingyao Papanicolaou, George J. Millikan, Robert C. Ambrosone, Christine B. John, Esther M. Bernstein, Leslie Zheng, Wei Hu, Jennifer J. Ziegler, Regina G. Nyante, Sarah J. Bandera, Elisa V. Ingles, Sue A. Press, Michael F. Chanock, Stephen J. Deming, Sandra L. Rodriguez-Gil, Jorge L. Palmer, Cameron D. Buxbaum, Sarah Ekunwe, Lynette Hirschhorn, Joel N. Henderson, Brian E. Myers, Simon Haiman, Christopher A. Reich, David Patterson, Nick Wilson, James G. Price, Alkes L. |
author_facet | Pasaniuc, Bogdan Zaitlen, Noah Lettre, Guillaume Chen, Gary K. Tandon, Arti Kao, W. H. Linda Ruczinski, Ingo Fornage, Myriam Siscovick, David S. Zhu, Xiaofeng Larkin, Emma Lange, Leslie A. Cupples, L. Adrienne Yang, Qiong Akylbekova, Ermeg L. Musani, Solomon K. Divers, Jasmin Mychaleckyj, Joe Li, Mingyao Papanicolaou, George J. Millikan, Robert C. Ambrosone, Christine B. John, Esther M. Bernstein, Leslie Zheng, Wei Hu, Jennifer J. Ziegler, Regina G. Nyante, Sarah J. Bandera, Elisa V. Ingles, Sue A. Press, Michael F. Chanock, Stephen J. Deming, Sandra L. Rodriguez-Gil, Jorge L. Palmer, Cameron D. Buxbaum, Sarah Ekunwe, Lynette Hirschhorn, Joel N. Henderson, Brian E. Myers, Simon Haiman, Christopher A. Reich, David Patterson, Nick Wilson, James G. Price, Alkes L. |
author_sort | Pasaniuc, Bogdan |
collection | PubMed |
description | While genome-wide association studies (GWAS) have primarily examined populations of European ancestry, more recent studies often involve additional populations, including admixed populations such as African Americans and Latinos. In admixed populations, linkage disequilibrium (LD) exists both at a fine scale in ancestral populations and at a coarse scale (admixture-LD) due to chromosomal segments of distinct ancestry. Disease association statistics in admixed populations have previously considered SNP association (LD mapping) or admixture association (mapping by admixture-LD), but not both. Here, we introduce a new statistical framework for combining SNP and admixture association in case-control studies, as well as methods for local ancestry-aware imputation. We illustrate the gain in statistical power achieved by these methods by analyzing data of 6,209 unrelated African Americans from the CARe project genotyped on the Affymetrix 6.0 chip, in conjunction with both simulated and real phenotypes, as well as by analyzing the FGFR2 locus using breast cancer GWAS data from 5,761 African-American women. We show that, at typed SNPs, our method yields an 8% increase in statistical power for finding disease risk loci compared to the power achieved by standard methods in case-control studies. At imputed SNPs, we observe an 11% increase in statistical power for mapping disease loci when our local ancestry-aware imputation framework and the new scoring statistic are jointly employed. Finally, we show that our method increases statistical power in regions harboring the causal SNP in the case when the causal SNP is untyped and cannot be imputed. Our methods and our publicly available software are broadly applicable to GWAS in admixed populations. |
format | Text |
id | pubmed-3080860 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-30808602011-05-03 Enhanced Statistical Tests for GWAS in Admixed Populations: Assessment using African Americans from CARe and a Breast Cancer Consortium Pasaniuc, Bogdan Zaitlen, Noah Lettre, Guillaume Chen, Gary K. Tandon, Arti Kao, W. H. Linda Ruczinski, Ingo Fornage, Myriam Siscovick, David S. Zhu, Xiaofeng Larkin, Emma Lange, Leslie A. Cupples, L. Adrienne Yang, Qiong Akylbekova, Ermeg L. Musani, Solomon K. Divers, Jasmin Mychaleckyj, Joe Li, Mingyao Papanicolaou, George J. Millikan, Robert C. Ambrosone, Christine B. John, Esther M. Bernstein, Leslie Zheng, Wei Hu, Jennifer J. Ziegler, Regina G. Nyante, Sarah J. Bandera, Elisa V. Ingles, Sue A. Press, Michael F. Chanock, Stephen J. Deming, Sandra L. Rodriguez-Gil, Jorge L. Palmer, Cameron D. Buxbaum, Sarah Ekunwe, Lynette Hirschhorn, Joel N. Henderson, Brian E. Myers, Simon Haiman, Christopher A. Reich, David Patterson, Nick Wilson, James G. Price, Alkes L. PLoS Genet Research Article While genome-wide association studies (GWAS) have primarily examined populations of European ancestry, more recent studies often involve additional populations, including admixed populations such as African Americans and Latinos. In admixed populations, linkage disequilibrium (LD) exists both at a fine scale in ancestral populations and at a coarse scale (admixture-LD) due to chromosomal segments of distinct ancestry. Disease association statistics in admixed populations have previously considered SNP association (LD mapping) or admixture association (mapping by admixture-LD), but not both. Here, we introduce a new statistical framework for combining SNP and admixture association in case-control studies, as well as methods for local ancestry-aware imputation. We illustrate the gain in statistical power achieved by these methods by analyzing data of 6,209 unrelated African Americans from the CARe project genotyped on the Affymetrix 6.0 chip, in conjunction with both simulated and real phenotypes, as well as by analyzing the FGFR2 locus using breast cancer GWAS data from 5,761 African-American women. We show that, at typed SNPs, our method yields an 8% increase in statistical power for finding disease risk loci compared to the power achieved by standard methods in case-control studies. At imputed SNPs, we observe an 11% increase in statistical power for mapping disease loci when our local ancestry-aware imputation framework and the new scoring statistic are jointly employed. Finally, we show that our method increases statistical power in regions harboring the causal SNP in the case when the causal SNP is untyped and cannot be imputed. Our methods and our publicly available software are broadly applicable to GWAS in admixed populations. Public Library of Science 2011-04-21 /pmc/articles/PMC3080860/ /pubmed/21541012 http://dx.doi.org/10.1371/journal.pgen.1001371 Text en This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication. https://creativecommons.org/publicdomain/zero/1.0/ This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration, which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. |
spellingShingle | Research Article Pasaniuc, Bogdan Zaitlen, Noah Lettre, Guillaume Chen, Gary K. Tandon, Arti Kao, W. H. Linda Ruczinski, Ingo Fornage, Myriam Siscovick, David S. Zhu, Xiaofeng Larkin, Emma Lange, Leslie A. Cupples, L. Adrienne Yang, Qiong Akylbekova, Ermeg L. Musani, Solomon K. Divers, Jasmin Mychaleckyj, Joe Li, Mingyao Papanicolaou, George J. Millikan, Robert C. Ambrosone, Christine B. John, Esther M. Bernstein, Leslie Zheng, Wei Hu, Jennifer J. Ziegler, Regina G. Nyante, Sarah J. Bandera, Elisa V. Ingles, Sue A. Press, Michael F. Chanock, Stephen J. Deming, Sandra L. Rodriguez-Gil, Jorge L. Palmer, Cameron D. Buxbaum, Sarah Ekunwe, Lynette Hirschhorn, Joel N. Henderson, Brian E. Myers, Simon Haiman, Christopher A. Reich, David Patterson, Nick Wilson, James G. Price, Alkes L. Enhanced Statistical Tests for GWAS in Admixed Populations: Assessment using African Americans from CARe and a Breast Cancer Consortium |
title | Enhanced Statistical Tests for GWAS in Admixed Populations: Assessment using African Americans from CARe and a Breast Cancer Consortium |
title_full | Enhanced Statistical Tests for GWAS in Admixed Populations: Assessment using African Americans from CARe and a Breast Cancer Consortium |
title_fullStr | Enhanced Statistical Tests for GWAS in Admixed Populations: Assessment using African Americans from CARe and a Breast Cancer Consortium |
title_full_unstemmed | Enhanced Statistical Tests for GWAS in Admixed Populations: Assessment using African Americans from CARe and a Breast Cancer Consortium |
title_short | Enhanced Statistical Tests for GWAS in Admixed Populations: Assessment using African Americans from CARe and a Breast Cancer Consortium |
title_sort | enhanced statistical tests for gwas in admixed populations: assessment using african americans from care and a breast cancer consortium |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3080860/ https://www.ncbi.nlm.nih.gov/pubmed/21541012 http://dx.doi.org/10.1371/journal.pgen.1001371 |
work_keys_str_mv | AT pasaniucbogdan enhancedstatisticaltestsforgwasinadmixedpopulationsassessmentusingafricanamericansfromcareandabreastcancerconsortium AT zaitlennoah enhancedstatisticaltestsforgwasinadmixedpopulationsassessmentusingafricanamericansfromcareandabreastcancerconsortium AT lettreguillaume enhancedstatisticaltestsforgwasinadmixedpopulationsassessmentusingafricanamericansfromcareandabreastcancerconsortium AT chengaryk enhancedstatisticaltestsforgwasinadmixedpopulationsassessmentusingafricanamericansfromcareandabreastcancerconsortium AT tandonarti enhancedstatisticaltestsforgwasinadmixedpopulationsassessmentusingafricanamericansfromcareandabreastcancerconsortium AT kaowhlinda enhancedstatisticaltestsforgwasinadmixedpopulationsassessmentusingafricanamericansfromcareandabreastcancerconsortium AT ruczinskiingo enhancedstatisticaltestsforgwasinadmixedpopulationsassessmentusingafricanamericansfromcareandabreastcancerconsortium AT fornagemyriam enhancedstatisticaltestsforgwasinadmixedpopulationsassessmentusingafricanamericansfromcareandabreastcancerconsortium AT siscovickdavids enhancedstatisticaltestsforgwasinadmixedpopulationsassessmentusingafricanamericansfromcareandabreastcancerconsortium AT zhuxiaofeng enhancedstatisticaltestsforgwasinadmixedpopulationsassessmentusingafricanamericansfromcareandabreastcancerconsortium AT larkinemma enhancedstatisticaltestsforgwasinadmixedpopulationsassessmentusingafricanamericansfromcareandabreastcancerconsortium AT langelesliea enhancedstatisticaltestsforgwasinadmixedpopulationsassessmentusingafricanamericansfromcareandabreastcancerconsortium AT cupplesladrienne enhancedstatisticaltestsforgwasinadmixedpopulationsassessmentusingafricanamericansfromcareandabreastcancerconsortium AT yangqiong enhancedstatisticaltestsforgwasinadmixedpopulationsassessmentusingafricanamericansfromcareandabreastcancerconsortium AT akylbekovaermegl enhancedstatisticaltestsforgwasinadmixedpopulationsassessmentusingafricanamericansfromcareandabreastcancerconsortium AT musanisolomonk enhancedstatisticaltestsforgwasinadmixedpopulationsassessmentusingafricanamericansfromcareandabreastcancerconsortium AT diversjasmin enhancedstatisticaltestsforgwasinadmixedpopulationsassessmentusingafricanamericansfromcareandabreastcancerconsortium AT mychaleckyjjoe enhancedstatisticaltestsforgwasinadmixedpopulationsassessmentusingafricanamericansfromcareandabreastcancerconsortium AT limingyao enhancedstatisticaltestsforgwasinadmixedpopulationsassessmentusingafricanamericansfromcareandabreastcancerconsortium AT papanicolaougeorgej enhancedstatisticaltestsforgwasinadmixedpopulationsassessmentusingafricanamericansfromcareandabreastcancerconsortium AT millikanrobertc enhancedstatisticaltestsforgwasinadmixedpopulationsassessmentusingafricanamericansfromcareandabreastcancerconsortium AT ambrosonechristineb enhancedstatisticaltestsforgwasinadmixedpopulationsassessmentusingafricanamericansfromcareandabreastcancerconsortium AT johnestherm enhancedstatisticaltestsforgwasinadmixedpopulationsassessmentusingafricanamericansfromcareandabreastcancerconsortium AT bernsteinleslie enhancedstatisticaltestsforgwasinadmixedpopulationsassessmentusingafricanamericansfromcareandabreastcancerconsortium AT zhengwei enhancedstatisticaltestsforgwasinadmixedpopulationsassessmentusingafricanamericansfromcareandabreastcancerconsortium AT hujenniferj enhancedstatisticaltestsforgwasinadmixedpopulationsassessmentusingafricanamericansfromcareandabreastcancerconsortium AT zieglerreginag enhancedstatisticaltestsforgwasinadmixedpopulationsassessmentusingafricanamericansfromcareandabreastcancerconsortium AT nyantesarahj enhancedstatisticaltestsforgwasinadmixedpopulationsassessmentusingafricanamericansfromcareandabreastcancerconsortium AT banderaelisav enhancedstatisticaltestsforgwasinadmixedpopulationsassessmentusingafricanamericansfromcareandabreastcancerconsortium AT inglessuea enhancedstatisticaltestsforgwasinadmixedpopulationsassessmentusingafricanamericansfromcareandabreastcancerconsortium AT pressmichaelf enhancedstatisticaltestsforgwasinadmixedpopulationsassessmentusingafricanamericansfromcareandabreastcancerconsortium AT chanockstephenj enhancedstatisticaltestsforgwasinadmixedpopulationsassessmentusingafricanamericansfromcareandabreastcancerconsortium AT demingsandral enhancedstatisticaltestsforgwasinadmixedpopulationsassessmentusingafricanamericansfromcareandabreastcancerconsortium AT rodriguezgiljorgel enhancedstatisticaltestsforgwasinadmixedpopulationsassessmentusingafricanamericansfromcareandabreastcancerconsortium AT palmercamerond enhancedstatisticaltestsforgwasinadmixedpopulationsassessmentusingafricanamericansfromcareandabreastcancerconsortium AT buxbaumsarah enhancedstatisticaltestsforgwasinadmixedpopulationsassessmentusingafricanamericansfromcareandabreastcancerconsortium AT ekunwelynette enhancedstatisticaltestsforgwasinadmixedpopulationsassessmentusingafricanamericansfromcareandabreastcancerconsortium AT hirschhornjoeln enhancedstatisticaltestsforgwasinadmixedpopulationsassessmentusingafricanamericansfromcareandabreastcancerconsortium AT hendersonbriane enhancedstatisticaltestsforgwasinadmixedpopulationsassessmentusingafricanamericansfromcareandabreastcancerconsortium AT myerssimon enhancedstatisticaltestsforgwasinadmixedpopulationsassessmentusingafricanamericansfromcareandabreastcancerconsortium AT haimanchristophera enhancedstatisticaltestsforgwasinadmixedpopulationsassessmentusingafricanamericansfromcareandabreastcancerconsortium AT reichdavid enhancedstatisticaltestsforgwasinadmixedpopulationsassessmentusingafricanamericansfromcareandabreastcancerconsortium AT pattersonnick enhancedstatisticaltestsforgwasinadmixedpopulationsassessmentusingafricanamericansfromcareandabreastcancerconsortium AT wilsonjamesg enhancedstatisticaltestsforgwasinadmixedpopulationsassessmentusingafricanamericansfromcareandabreastcancerconsortium AT pricealkesl enhancedstatisticaltestsforgwasinadmixedpopulationsassessmentusingafricanamericansfromcareandabreastcancerconsortium |