Cargando…
Towards Accurate Estimation of the Proportion of True Null Hypotheses in Multiple Testing
BACKGROUND: Biomedical researchers are now often faced with situations where it is necessary to test a large number of hypotheses simultaneously, eg, in comparative gene expression studies using high-throughput microarray technology. To properly control false positive errors the FDR (false discovery...
Autor principal: | |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3081301/ https://www.ncbi.nlm.nih.gov/pubmed/21526119 http://dx.doi.org/10.1371/journal.pone.0018874 |
_version_ | 1782202196251639808 |
---|---|
author | Zhang, Shu-Dong |
author_facet | Zhang, Shu-Dong |
author_sort | Zhang, Shu-Dong |
collection | PubMed |
description | BACKGROUND: Biomedical researchers are now often faced with situations where it is necessary to test a large number of hypotheses simultaneously, eg, in comparative gene expression studies using high-throughput microarray technology. To properly control false positive errors the FDR (false discovery rate) approach has become widely used in multiple testing. The accurate estimation of FDR requires the proportion of true null hypotheses being accurately estimated. To date many methods for estimating this quantity have been proposed. Typically when a new method is introduced, some simulations are carried out to show the improved accuracy of the new method. However, the simulations are often very limited to covering only a few points in the parameter space. RESULTS: Here I have carried out extensive in silico experiments to compare some commonly used methods for estimating the proportion of true null hypotheses. The coverage of these simulations is unprecedented thorough over the parameter space compared to typical simulation studies in the literature. Thus this work enables us to draw conclusions globally as to the performance of these different methods. It was found that a very simple method gives the most accurate estimation in a dominantly large area of the parameter space. Given its simplicity and its overall superior accuracy I recommend its use as the first choice for estimating the proportion of true null hypotheses in multiple testing. |
format | Text |
id | pubmed-3081301 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-30813012011-04-27 Towards Accurate Estimation of the Proportion of True Null Hypotheses in Multiple Testing Zhang, Shu-Dong PLoS One Research Article BACKGROUND: Biomedical researchers are now often faced with situations where it is necessary to test a large number of hypotheses simultaneously, eg, in comparative gene expression studies using high-throughput microarray technology. To properly control false positive errors the FDR (false discovery rate) approach has become widely used in multiple testing. The accurate estimation of FDR requires the proportion of true null hypotheses being accurately estimated. To date many methods for estimating this quantity have been proposed. Typically when a new method is introduced, some simulations are carried out to show the improved accuracy of the new method. However, the simulations are often very limited to covering only a few points in the parameter space. RESULTS: Here I have carried out extensive in silico experiments to compare some commonly used methods for estimating the proportion of true null hypotheses. The coverage of these simulations is unprecedented thorough over the parameter space compared to typical simulation studies in the literature. Thus this work enables us to draw conclusions globally as to the performance of these different methods. It was found that a very simple method gives the most accurate estimation in a dominantly large area of the parameter space. Given its simplicity and its overall superior accuracy I recommend its use as the first choice for estimating the proportion of true null hypotheses in multiple testing. Public Library of Science 2011-04-22 /pmc/articles/PMC3081301/ /pubmed/21526119 http://dx.doi.org/10.1371/journal.pone.0018874 Text en Shu-Dong Zhang. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Zhang, Shu-Dong Towards Accurate Estimation of the Proportion of True Null Hypotheses in Multiple Testing |
title | Towards Accurate Estimation of the Proportion of True Null Hypotheses in Multiple Testing |
title_full | Towards Accurate Estimation of the Proportion of True Null Hypotheses in Multiple Testing |
title_fullStr | Towards Accurate Estimation of the Proportion of True Null Hypotheses in Multiple Testing |
title_full_unstemmed | Towards Accurate Estimation of the Proportion of True Null Hypotheses in Multiple Testing |
title_short | Towards Accurate Estimation of the Proportion of True Null Hypotheses in Multiple Testing |
title_sort | towards accurate estimation of the proportion of true null hypotheses in multiple testing |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3081301/ https://www.ncbi.nlm.nih.gov/pubmed/21526119 http://dx.doi.org/10.1371/journal.pone.0018874 |
work_keys_str_mv | AT zhangshudong towardsaccurateestimationoftheproportionoftruenullhypothesesinmultipletesting |