Cargando…

Review of cellular and molecular pathways linking thrombosis and innate immune system during sepsis

Cellular and molecular pathways link thrombosis and innate immune system during sepsis. Extrinsic pathway activation of protease thrombin through FVIIa and tissue factor (TF) in sepsis help activate its endothelial cell (EC) membrane Protease Activated Receptor 1 (PAR-1). Thrombin adjusts the EC cyc...

Descripción completa

Detalles Bibliográficos
Autor principal: Konecny, Filip A.
Formato: Texto
Lenguaje:English
Publicado: Medknow Publications 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3082833/
https://www.ncbi.nlm.nih.gov/pubmed/21526108
_version_ 1782202337420378112
author Konecny, Filip A.
author_facet Konecny, Filip A.
author_sort Konecny, Filip A.
collection PubMed
description Cellular and molecular pathways link thrombosis and innate immune system during sepsis. Extrinsic pathway activation of protease thrombin through FVIIa and tissue factor (TF) in sepsis help activate its endothelial cell (EC) membrane Protease Activated Receptor 1 (PAR-1). Thrombin adjusts the EC cycle through activation of G proteins (G12/13), and later through Rho GEFs (guanine nucleotide exchange factors), and provides a path for Rho GTPases mediated cytoskeletal responses involved in shape change and permeability of the EC membrane leading to an increase of leakage of plasma proteins. At the same time, thrombin stimulates spontaneous mitogenesis by inducing activation of the cell cycle from G0-G1 to S by down-regulation of p27Kip1, a negative regulator of the cell cycle, in association with the up-regulation of S-phase kinase associated protein 2 (Skp2). After transport in cytoplasm, p27 Kip1 binds to RhoA thus prevent activation of RhoA by GEFs, thus inhibit GDP-GTP exchange mediated by GEFs. In cytoplasm, releasing factor (RF) p27-RF-Rho is able to free RhoA. P27 RF-Rho binds p27kip1 and prevents p27kip1 from binding to RhoA. Exposed RhoA is later able to increase the expression of the F-box protein Skp2, after its Akt triggered 14-3-3-β-dependent cytoplasm relocation. Skp2 increases cytoplasm ubiquitination-dependent degradation of p27Kip1. Additionally, after septic induction of canonical NF-kB pathway in EC through TLR4/IRAK4/TRAF/IkB, an IKKα dimer phosphorylates the p52 precursor NF-kB2/p100, leading to p100 processing and translocation of RelB/p52 to the nucleus. By controlling the NF-kB-RelB complex, IKKα signaling regulates the transcription of the Skp2 and correspondingly p27Kip1.
format Text
id pubmed-3082833
institution National Center for Biotechnology Information
language English
publishDate 2010
publisher Medknow Publications
record_format MEDLINE/PubMed
spelling pubmed-30828332011-04-27 Review of cellular and molecular pathways linking thrombosis and innate immune system during sepsis Konecny, Filip A. J Res Med Sci Review Article Cellular and molecular pathways link thrombosis and innate immune system during sepsis. Extrinsic pathway activation of protease thrombin through FVIIa and tissue factor (TF) in sepsis help activate its endothelial cell (EC) membrane Protease Activated Receptor 1 (PAR-1). Thrombin adjusts the EC cycle through activation of G proteins (G12/13), and later through Rho GEFs (guanine nucleotide exchange factors), and provides a path for Rho GTPases mediated cytoskeletal responses involved in shape change and permeability of the EC membrane leading to an increase of leakage of plasma proteins. At the same time, thrombin stimulates spontaneous mitogenesis by inducing activation of the cell cycle from G0-G1 to S by down-regulation of p27Kip1, a negative regulator of the cell cycle, in association with the up-regulation of S-phase kinase associated protein 2 (Skp2). After transport in cytoplasm, p27 Kip1 binds to RhoA thus prevent activation of RhoA by GEFs, thus inhibit GDP-GTP exchange mediated by GEFs. In cytoplasm, releasing factor (RF) p27-RF-Rho is able to free RhoA. P27 RF-Rho binds p27kip1 and prevents p27kip1 from binding to RhoA. Exposed RhoA is later able to increase the expression of the F-box protein Skp2, after its Akt triggered 14-3-3-β-dependent cytoplasm relocation. Skp2 increases cytoplasm ubiquitination-dependent degradation of p27Kip1. Additionally, after septic induction of canonical NF-kB pathway in EC through TLR4/IRAK4/TRAF/IkB, an IKKα dimer phosphorylates the p52 precursor NF-kB2/p100, leading to p100 processing and translocation of RelB/p52 to the nucleus. By controlling the NF-kB-RelB complex, IKKα signaling regulates the transcription of the Skp2 and correspondingly p27Kip1. Medknow Publications 2010 /pmc/articles/PMC3082833/ /pubmed/21526108 Text en © Journal of Research in Medical Sciences http://creativecommons.org/licenses/by/2.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Review Article
Konecny, Filip A.
Review of cellular and molecular pathways linking thrombosis and innate immune system during sepsis
title Review of cellular and molecular pathways linking thrombosis and innate immune system during sepsis
title_full Review of cellular and molecular pathways linking thrombosis and innate immune system during sepsis
title_fullStr Review of cellular and molecular pathways linking thrombosis and innate immune system during sepsis
title_full_unstemmed Review of cellular and molecular pathways linking thrombosis and innate immune system during sepsis
title_short Review of cellular and molecular pathways linking thrombosis and innate immune system during sepsis
title_sort review of cellular and molecular pathways linking thrombosis and innate immune system during sepsis
topic Review Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3082833/
https://www.ncbi.nlm.nih.gov/pubmed/21526108
work_keys_str_mv AT konecnyfilipa reviewofcellularandmolecularpathwayslinkingthrombosisandinnateimmunesystemduringsepsis