Cargando…
Development and optimization of solid lipid nanoparticle formulation for ophthalmic delivery of chloramphenicol using a Box-Behnken design
The purpose of the present study was to optimize a solid lipid nanoparticle (SLN) of chloramphenicol by investigating the relationship between design factors and experimental data using response surface methodology. A Box-Behnken design was constructed using solid lipid (X(1)), surfactant (X(2)), an...
Autores principales: | , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Dove Medical Press
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3084315/ https://www.ncbi.nlm.nih.gov/pubmed/21556343 http://dx.doi.org/10.2147/IJN.S17386 |
_version_ | 1782202495227920384 |
---|---|
author | Hao, Jifu Fang, Xinsheng Zhou, Yanfang Wang, Jianzhu Guo, Fengguang Li, Fei Peng, Xinsheng |
author_facet | Hao, Jifu Fang, Xinsheng Zhou, Yanfang Wang, Jianzhu Guo, Fengguang Li, Fei Peng, Xinsheng |
author_sort | Hao, Jifu |
collection | PubMed |
description | The purpose of the present study was to optimize a solid lipid nanoparticle (SLN) of chloramphenicol by investigating the relationship between design factors and experimental data using response surface methodology. A Box-Behnken design was constructed using solid lipid (X(1)), surfactant (X(2)), and drug/lipid ratio (X(3)) level as independent factors. SLN was successfully prepared by a modified method of melt-emulsion ultrasonication and low temperature-solidification technique using glyceryl monostearate as the solid lipid, and poloxamer 188 as the surfactant. The dependent variables were entrapment efficiency (EE), drug loading (DL), and turbidity. Properties of SLN such as the morphology, particle size, zeta potential, EE, DL, and drug release behavior were investigated, respectively. As a result, the nanoparticle designed showed nearly spherical particles with a mean particle size of 248 nm. The polydispersity index of particle size was 0.277 ± 0.058 and zeta potential was −8.74 mV. The EE (%) and DL (%) could reach up to 83.29% ± 1.23% and 10.11% ± 2.02%, respectively. In vitro release studies showed a burst release at the initial stage followed by a prolonged release of chloramphenicol from SLN up to 48 hours. The release kinetics of the optimized formulation best fitted the Peppas–Korsmeyer model. These results indicated that the chloramphenicol-loaded SLN could potentially be exploited as a delivery system with improved drug entrapment efficiency and controlled drug release. |
format | Text |
id | pubmed-3084315 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | Dove Medical Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-30843152011-05-09 Development and optimization of solid lipid nanoparticle formulation for ophthalmic delivery of chloramphenicol using a Box-Behnken design Hao, Jifu Fang, Xinsheng Zhou, Yanfang Wang, Jianzhu Guo, Fengguang Li, Fei Peng, Xinsheng Int J Nanomedicine Original Research The purpose of the present study was to optimize a solid lipid nanoparticle (SLN) of chloramphenicol by investigating the relationship between design factors and experimental data using response surface methodology. A Box-Behnken design was constructed using solid lipid (X(1)), surfactant (X(2)), and drug/lipid ratio (X(3)) level as independent factors. SLN was successfully prepared by a modified method of melt-emulsion ultrasonication and low temperature-solidification technique using glyceryl monostearate as the solid lipid, and poloxamer 188 as the surfactant. The dependent variables were entrapment efficiency (EE), drug loading (DL), and turbidity. Properties of SLN such as the morphology, particle size, zeta potential, EE, DL, and drug release behavior were investigated, respectively. As a result, the nanoparticle designed showed nearly spherical particles with a mean particle size of 248 nm. The polydispersity index of particle size was 0.277 ± 0.058 and zeta potential was −8.74 mV. The EE (%) and DL (%) could reach up to 83.29% ± 1.23% and 10.11% ± 2.02%, respectively. In vitro release studies showed a burst release at the initial stage followed by a prolonged release of chloramphenicol from SLN up to 48 hours. The release kinetics of the optimized formulation best fitted the Peppas–Korsmeyer model. These results indicated that the chloramphenicol-loaded SLN could potentially be exploited as a delivery system with improved drug entrapment efficiency and controlled drug release. Dove Medical Press 2011 2011-04-06 /pmc/articles/PMC3084315/ /pubmed/21556343 http://dx.doi.org/10.2147/IJN.S17386 Text en © 2011 Hao et al, publisher and licensee Dove Medical Press Ltd. This is an Open Access article which permits unrestricted noncommercial use, provided the original work is properly cited. |
spellingShingle | Original Research Hao, Jifu Fang, Xinsheng Zhou, Yanfang Wang, Jianzhu Guo, Fengguang Li, Fei Peng, Xinsheng Development and optimization of solid lipid nanoparticle formulation for ophthalmic delivery of chloramphenicol using a Box-Behnken design |
title | Development and optimization of solid lipid nanoparticle formulation for ophthalmic delivery of chloramphenicol using a Box-Behnken design |
title_full | Development and optimization of solid lipid nanoparticle formulation for ophthalmic delivery of chloramphenicol using a Box-Behnken design |
title_fullStr | Development and optimization of solid lipid nanoparticle formulation for ophthalmic delivery of chloramphenicol using a Box-Behnken design |
title_full_unstemmed | Development and optimization of solid lipid nanoparticle formulation for ophthalmic delivery of chloramphenicol using a Box-Behnken design |
title_short | Development and optimization of solid lipid nanoparticle formulation for ophthalmic delivery of chloramphenicol using a Box-Behnken design |
title_sort | development and optimization of solid lipid nanoparticle formulation for ophthalmic delivery of chloramphenicol using a box-behnken design |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3084315/ https://www.ncbi.nlm.nih.gov/pubmed/21556343 http://dx.doi.org/10.2147/IJN.S17386 |
work_keys_str_mv | AT haojifu developmentandoptimizationofsolidlipidnanoparticleformulationforophthalmicdeliveryofchloramphenicolusingaboxbehnkendesign AT fangxinsheng developmentandoptimizationofsolidlipidnanoparticleformulationforophthalmicdeliveryofchloramphenicolusingaboxbehnkendesign AT zhouyanfang developmentandoptimizationofsolidlipidnanoparticleformulationforophthalmicdeliveryofchloramphenicolusingaboxbehnkendesign AT wangjianzhu developmentandoptimizationofsolidlipidnanoparticleformulationforophthalmicdeliveryofchloramphenicolusingaboxbehnkendesign AT guofengguang developmentandoptimizationofsolidlipidnanoparticleformulationforophthalmicdeliveryofchloramphenicolusingaboxbehnkendesign AT lifei developmentandoptimizationofsolidlipidnanoparticleformulationforophthalmicdeliveryofchloramphenicolusingaboxbehnkendesign AT pengxinsheng developmentandoptimizationofsolidlipidnanoparticleformulationforophthalmicdeliveryofchloramphenicolusingaboxbehnkendesign |