Cargando…
Calpain Cleavage Prediction Using Multiple Kernel Learning
Calpain, an intracellular [Image: see text]-dependent cysteine protease, is known to play a role in a wide range of metabolic pathways through limited proteolysis of its substrates. However, only a limited number of these substrates are currently known, with the exact mechanism of substrate recognit...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3086883/ https://www.ncbi.nlm.nih.gov/pubmed/21559271 http://dx.doi.org/10.1371/journal.pone.0019035 |
_version_ | 1782202720981090304 |
---|---|
author | duVerle, David A. Ono, Yasuko Sorimachi, Hiroyuki Mamitsuka, Hiroshi |
author_facet | duVerle, David A. Ono, Yasuko Sorimachi, Hiroyuki Mamitsuka, Hiroshi |
author_sort | duVerle, David A. |
collection | PubMed |
description | Calpain, an intracellular [Image: see text]-dependent cysteine protease, is known to play a role in a wide range of metabolic pathways through limited proteolysis of its substrates. However, only a limited number of these substrates are currently known, with the exact mechanism of substrate recognition and cleavage by calpain still largely unknown. While previous research has successfully applied standard machine-learning algorithms to accurately predict substrate cleavage by other similar types of proteases, their approach does not extend well to calpain, possibly due to its particular mode of proteolytic action and limited amount of experimental data. Through the use of Multiple Kernel Learning, a recent extension to the classic Support Vector Machine framework, we were able to train complex models based on rich, heterogeneous feature sets, leading to significantly improved prediction quality (6% over highest AUC score produced by state-of-the-art methods). In addition to producing a stronger machine-learning model for the prediction of calpain cleavage, we were able to highlight the importance and role of each feature of substrate sequences in defining specificity: primary sequence, secondary structure and solvent accessibility. Most notably, we showed there existed significant specificity differences across calpain sub-types, despite previous assumption to the contrary. Prediction accuracy was further successfully validated using, as an unbiased test set, mutated sequences of calpastatin (endogenous inhibitor of calpain) modified to no longer block calpain's proteolytic action. An online implementation of our prediction tool is available at http://calpain.org. |
format | Text |
id | pubmed-3086883 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-30868832011-05-10 Calpain Cleavage Prediction Using Multiple Kernel Learning duVerle, David A. Ono, Yasuko Sorimachi, Hiroyuki Mamitsuka, Hiroshi PLoS One Research Article Calpain, an intracellular [Image: see text]-dependent cysteine protease, is known to play a role in a wide range of metabolic pathways through limited proteolysis of its substrates. However, only a limited number of these substrates are currently known, with the exact mechanism of substrate recognition and cleavage by calpain still largely unknown. While previous research has successfully applied standard machine-learning algorithms to accurately predict substrate cleavage by other similar types of proteases, their approach does not extend well to calpain, possibly due to its particular mode of proteolytic action and limited amount of experimental data. Through the use of Multiple Kernel Learning, a recent extension to the classic Support Vector Machine framework, we were able to train complex models based on rich, heterogeneous feature sets, leading to significantly improved prediction quality (6% over highest AUC score produced by state-of-the-art methods). In addition to producing a stronger machine-learning model for the prediction of calpain cleavage, we were able to highlight the importance and role of each feature of substrate sequences in defining specificity: primary sequence, secondary structure and solvent accessibility. Most notably, we showed there existed significant specificity differences across calpain sub-types, despite previous assumption to the contrary. Prediction accuracy was further successfully validated using, as an unbiased test set, mutated sequences of calpastatin (endogenous inhibitor of calpain) modified to no longer block calpain's proteolytic action. An online implementation of our prediction tool is available at http://calpain.org. Public Library of Science 2011-05-03 /pmc/articles/PMC3086883/ /pubmed/21559271 http://dx.doi.org/10.1371/journal.pone.0019035 Text en duVerle et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article duVerle, David A. Ono, Yasuko Sorimachi, Hiroyuki Mamitsuka, Hiroshi Calpain Cleavage Prediction Using Multiple Kernel Learning |
title | Calpain Cleavage Prediction Using Multiple Kernel Learning |
title_full | Calpain Cleavage Prediction Using Multiple Kernel Learning |
title_fullStr | Calpain Cleavage Prediction Using Multiple Kernel Learning |
title_full_unstemmed | Calpain Cleavage Prediction Using Multiple Kernel Learning |
title_short | Calpain Cleavage Prediction Using Multiple Kernel Learning |
title_sort | calpain cleavage prediction using multiple kernel learning |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3086883/ https://www.ncbi.nlm.nih.gov/pubmed/21559271 http://dx.doi.org/10.1371/journal.pone.0019035 |
work_keys_str_mv | AT duverledavida calpaincleavagepredictionusingmultiplekernellearning AT onoyasuko calpaincleavagepredictionusingmultiplekernellearning AT sorimachihiroyuki calpaincleavagepredictionusingmultiplekernellearning AT mamitsukahiroshi calpaincleavagepredictionusingmultiplekernellearning |