Cargando…

M153R Mutation in a pH-Sensitive Green Fluorescent Protein Stabilizes Its Fusion Proteins

BACKGROUND: Green fluorescent protein (GFP) and its fusion proteins have been used extensively to monitor and analyze a wide range of biological processes. However, proteolytic cleavage often removes GFP from its fusion proteins, not only causing a poor signal-to-noise ratio of the fluorescent image...

Descripción completa

Detalles Bibliográficos
Autores principales: Morimoto, Yusuke V., Kojima, Seiji, Namba, Keiichi, Minamino, Tohru
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3086926/
https://www.ncbi.nlm.nih.gov/pubmed/21559297
http://dx.doi.org/10.1371/journal.pone.0019598
Descripción
Sumario:BACKGROUND: Green fluorescent protein (GFP) and its fusion proteins have been used extensively to monitor and analyze a wide range of biological processes. However, proteolytic cleavage often removes GFP from its fusion proteins, not only causing a poor signal-to-noise ratio of the fluorescent images but also leading to wrong interpretations. METHODOLOGY/PRINCIPAL FINDINGS: Here, we report that the M153R mutation in a ratiometric pH-sensitive GFP, pHluorin, significantly stabilizes its fusion products while the mutant protein still retaining a marked pH dependence of 410/470 nm excitation ratio of fluorescence intensity. The M153R mutation increases the brightness in vivo but does not affect the 410/470-nm excitation ratios at various pH values. CONCLUSIONS/SIGNIFICANCE: Since the pHluorin(M153R) probe can be directly fused to the target proteins, we suggest that it will be a potentially powerful tool for the measurement of local pH in living cells as well as for the analysis of subcellular localization of target proteins.