Cargando…

Role of phosphodiesterase and adenylate cyclase isozymes in murine colonic glucagon-like peptide 1 secreting cells

BACKGROUND AND PURPOSE: Glucagon-like peptide-1 (GLP-1) is secreted from enteroendocrine L-cells after food intake. Increasing GLP-1 signalling either through inhibition of the GLP-1 degrading enzyme dipeptidyl-peptidase IV or injection of GLP-1-mimetics has recently been successfully introduced for...

Descripción completa

Detalles Bibliográficos
Autores principales: Friedlander, Ronn S, Moss, Catherine E, Mace, Jessica, Parker, Helen E, Tolhurst, Gwen, Habib, Abdella M, Wachten, Sebastian, Cooper, Dermot M, Gribble, Fiona M, Reimann, Frank
Formato: Texto
Lenguaje:English
Publicado: Blackwell Publishing Ltd 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3087130/
https://www.ncbi.nlm.nih.gov/pubmed/21054345
http://dx.doi.org/10.1111/j.1476-5381.2010.01107.x
Descripción
Sumario:BACKGROUND AND PURPOSE: Glucagon-like peptide-1 (GLP-1) is secreted from enteroendocrine L-cells after food intake. Increasing GLP-1 signalling either through inhibition of the GLP-1 degrading enzyme dipeptidyl-peptidase IV or injection of GLP-1-mimetics has recently been successfully introduced for the treatment of type 2 diabetes. Boosting secretion from the L-cell has so far not been exploited, due to our incomplete understanding of L-cell physiology. Elevation of cyclic adenosine monophosphate (cAMP) has been shown to be a strong stimulus for GLP-1 secretion and here we investigate the activities of adenylate cyclase (AC) and phosphodiesterase (PDE) isozymes likely to shape cAMP responses in L-cells. EXPERIMENTAL APPROACH: Expression of AC and PDE isoforms was quantified by RT-PCR. Single cell responses to stimulation or inhibition of AC and PDE isoforms were monitored with real-time cAMP probes. GLP-1 secretion was assessed by elisa. KEY RESULTS: Quantitative PCR identified expression of protein kinase C- and Ca(2+)-activated ACs, corresponding with phorbolester and cytosolic Ca(2+)-stimulated cAMP elevation. Inhibition of PDE2, 3 and 4 were found to stimulate GLP-1 secretion from murine L-cells in primary culture. This corresponded with cAMP elevations monitored with a plasma membrane targeted cAMP probe. Inhibition of PDE3 but not PDE2 was further shown to prevent GLP-1 secretion in response to guanylin, a peptide secreted into the gut lumen, which had not previously been implicated in L-cell secretion. CONCLUSIONS AND IMPLICATIONS: Our results reveal several mechanisms shaping cAMP responses in GLP-1 secreting cells, with some of the molecular components specifically expressed in L-cells when compared with their epithelial neighbours, thus opening new strategies for targeting these cells therapeutically.