Cargando…
Phosphorylation of STEF/Tiam2 by protein kinase A is critical for Rac1 activation and neurite outgrowth in dibutyryl cAMP–treated PC12D cells
The second messenger cAMP plays a pivotal role in neurite/axon growth and guidance, but its downstream pathways leading to the regulation of Rho GTPases, centrally implicated in neuronal morphogenesis, remain elusive. We examined spatiotemporal changes in Rac1 and Cdc42 activity and phosphatidylinos...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
The American Society for Cell Biology
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3093328/ https://www.ncbi.nlm.nih.gov/pubmed/21460187 http://dx.doi.org/10.1091/mbc.E10-09-0783 |
_version_ | 1782203460839538688 |
---|---|
author | Goto, Akihiro Hoshino, Mikio Matsuda, Michiyuki Nakamura, Takeshi |
author_facet | Goto, Akihiro Hoshino, Mikio Matsuda, Michiyuki Nakamura, Takeshi |
author_sort | Goto, Akihiro |
collection | PubMed |
description | The second messenger cAMP plays a pivotal role in neurite/axon growth and guidance, but its downstream pathways leading to the regulation of Rho GTPases, centrally implicated in neuronal morphogenesis, remain elusive. We examined spatiotemporal changes in Rac1 and Cdc42 activity and phosphatidylinositol 3,4,5-triphosphate (PIP(3)) concentration in dibutyryl cAMP (dbcAMP)-treated PC12D cells using Förster resonance energy transfer–based biosensors. During a 30-min incubation with dbcAMP, Rac1 activity gradually increased throughout the cells and remained at its maximal level. There was no change in PIP(3) concentration. After a 5-h incubation with dbcAMP, Rac1 and Cdc42 were activated at the protruding tips of neurites without PIP(3) accumulation. dbcAMP-induced Rac1 activation was principally mediated by protein kinase A (PKA) and Sif- and Tiam1-like exchange factor (STEF)/Tiam2. STEF depletion drastically reduced dbcAMP-induced neurite outgrowth. PKA phosphorylates STEF at three residues (Thr-749, Ser-782, Ser-1562); Thr-749 phosphorylation was critical for dbcAMP-induced Rac1 activation and neurite extension. During dbcAMP-induced neurite outgrowth, PKA activation at the plasma membrane became localized to neurite tips; this localization may contribute to local Rac1 activation at the same neurite tips. Considering the critical role of Rac1 in neuronal morphogenesis, the PKA—STEF–Rac1 pathway may play a crucial role in cytoskeletal regulation during neurite/axon outgrowth and guidance, which depend on cAMP signals. |
format | Text |
id | pubmed-3093328 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | The American Society for Cell Biology |
record_format | MEDLINE/PubMed |
spelling | pubmed-30933282011-07-30 Phosphorylation of STEF/Tiam2 by protein kinase A is critical for Rac1 activation and neurite outgrowth in dibutyryl cAMP–treated PC12D cells Goto, Akihiro Hoshino, Mikio Matsuda, Michiyuki Nakamura, Takeshi Mol Biol Cell Articles The second messenger cAMP plays a pivotal role in neurite/axon growth and guidance, but its downstream pathways leading to the regulation of Rho GTPases, centrally implicated in neuronal morphogenesis, remain elusive. We examined spatiotemporal changes in Rac1 and Cdc42 activity and phosphatidylinositol 3,4,5-triphosphate (PIP(3)) concentration in dibutyryl cAMP (dbcAMP)-treated PC12D cells using Förster resonance energy transfer–based biosensors. During a 30-min incubation with dbcAMP, Rac1 activity gradually increased throughout the cells and remained at its maximal level. There was no change in PIP(3) concentration. After a 5-h incubation with dbcAMP, Rac1 and Cdc42 were activated at the protruding tips of neurites without PIP(3) accumulation. dbcAMP-induced Rac1 activation was principally mediated by protein kinase A (PKA) and Sif- and Tiam1-like exchange factor (STEF)/Tiam2. STEF depletion drastically reduced dbcAMP-induced neurite outgrowth. PKA phosphorylates STEF at three residues (Thr-749, Ser-782, Ser-1562); Thr-749 phosphorylation was critical for dbcAMP-induced Rac1 activation and neurite extension. During dbcAMP-induced neurite outgrowth, PKA activation at the plasma membrane became localized to neurite tips; this localization may contribute to local Rac1 activation at the same neurite tips. Considering the critical role of Rac1 in neuronal morphogenesis, the PKA—STEF–Rac1 pathway may play a crucial role in cytoskeletal regulation during neurite/axon outgrowth and guidance, which depend on cAMP signals. The American Society for Cell Biology 2011-05-15 /pmc/articles/PMC3093328/ /pubmed/21460187 http://dx.doi.org/10.1091/mbc.E10-09-0783 Text en © 2011 Goto et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0). “ASCB®,” “The American Society for Cell Biology®,” and “Molecular Biology of the Cell®” are registered trademarks of The American Society of Cell Biology. |
spellingShingle | Articles Goto, Akihiro Hoshino, Mikio Matsuda, Michiyuki Nakamura, Takeshi Phosphorylation of STEF/Tiam2 by protein kinase A is critical for Rac1 activation and neurite outgrowth in dibutyryl cAMP–treated PC12D cells |
title | Phosphorylation of STEF/Tiam2 by protein kinase A is critical for Rac1 activation and neurite outgrowth in dibutyryl cAMP–treated PC12D cells |
title_full | Phosphorylation of STEF/Tiam2 by protein kinase A is critical for Rac1 activation and neurite outgrowth in dibutyryl cAMP–treated PC12D cells |
title_fullStr | Phosphorylation of STEF/Tiam2 by protein kinase A is critical for Rac1 activation and neurite outgrowth in dibutyryl cAMP–treated PC12D cells |
title_full_unstemmed | Phosphorylation of STEF/Tiam2 by protein kinase A is critical for Rac1 activation and neurite outgrowth in dibutyryl cAMP–treated PC12D cells |
title_short | Phosphorylation of STEF/Tiam2 by protein kinase A is critical for Rac1 activation and neurite outgrowth in dibutyryl cAMP–treated PC12D cells |
title_sort | phosphorylation of stef/tiam2 by protein kinase a is critical for rac1 activation and neurite outgrowth in dibutyryl camp–treated pc12d cells |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3093328/ https://www.ncbi.nlm.nih.gov/pubmed/21460187 http://dx.doi.org/10.1091/mbc.E10-09-0783 |
work_keys_str_mv | AT gotoakihiro phosphorylationofsteftiam2byproteinkinaseaiscriticalforrac1activationandneuriteoutgrowthindibutyrylcamptreatedpc12dcells AT hoshinomikio phosphorylationofsteftiam2byproteinkinaseaiscriticalforrac1activationandneuriteoutgrowthindibutyrylcamptreatedpc12dcells AT matsudamichiyuki phosphorylationofsteftiam2byproteinkinaseaiscriticalforrac1activationandneuriteoutgrowthindibutyrylcamptreatedpc12dcells AT nakamuratakeshi phosphorylationofsteftiam2byproteinkinaseaiscriticalforrac1activationandneuriteoutgrowthindibutyrylcamptreatedpc12dcells |