Cargando…

Systems biology approach to identify transcriptome reprogramming and candidate microRNA targets during the progression of polycystic kidney disease

BACKGROUND: Autosomal dominant polycystic kidney disease (ADPKD) is characterized by cyst formation throughout the kidney parenchyma. It is caused by mutations in either of two genes, PKD1 and PKD2. Mice that lack functional Pkd1 (Pkd1(-/-)), develop rapidly progressive cystic disease during embryog...

Descripción completa

Detalles Bibliográficos
Autores principales: Pandey, Priyanka, Qin, Shan, Ho, Jacqueline, Zhou, Jing, Kreidberg, Jordan A
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3111376/
https://www.ncbi.nlm.nih.gov/pubmed/21518438
http://dx.doi.org/10.1186/1752-0509-5-56
_version_ 1782205615342354432
author Pandey, Priyanka
Qin, Shan
Ho, Jacqueline
Zhou, Jing
Kreidberg, Jordan A
author_facet Pandey, Priyanka
Qin, Shan
Ho, Jacqueline
Zhou, Jing
Kreidberg, Jordan A
author_sort Pandey, Priyanka
collection PubMed
description BACKGROUND: Autosomal dominant polycystic kidney disease (ADPKD) is characterized by cyst formation throughout the kidney parenchyma. It is caused by mutations in either of two genes, PKD1 and PKD2. Mice that lack functional Pkd1 (Pkd1(-/-)), develop rapidly progressive cystic disease during embryogenesis, and serve as a model to study human ADPKD. Genome wide transcriptome reprogramming and the possible roles of micro-RNAs (miRNAs) that affect the initiation and progression of cyst formation in the Pkd1(-/- )have yet to be studied. miRNAs are small, regulatory non-coding RNAs, implicated in a wide spectrum of biological processes. Their expression levels are altered in several diseases including kidney cancer, diabetic nephropathy and PKD. RESULTS: We examined the molecular pathways that modulate renal cyst formation and growth in the Pkd1(-/- )model by performing global gene-expression profiling in embryonic kidneys at days 14.5 and 17.5. Gene Ontology and gene set enrichment analysis were used to identify overrepresented signaling pathways in Pkd1(-/- )kidneys. We found dysregulation of developmental, metabolic, and signaling pathways (e.g. Wnt, calcium, TGF-β and MAPK) in Pkd1(-/- )kidneys. Using a comparative transcriptomics approach, we determined similarities and differences with human ADPKD: ~50% overlap at the pathway level among the mis-regulated pathways was observed. By using computational approaches (TargetScan, miRanda, microT and miRDB), we then predicted miRNAs that were suggested to target the differentially expressed mRNAs. Differential expressions of 9 candidate miRNAs, miRs-10a, -30a-5p, -96, -126-5p, -182, -200a, -204, -429 and -488, and 16 genes were confirmed by qPCR. In addition, 14 candidate miRNA:mRNA reciprocal interactions were predicted. Several of the highly regulated genes and pathways were predicted as targets of miRNAs. CONCLUSIONS: We have described global transcriptional reprogramming during the progression of PKD in the Pkd1(-/- )model. We propose a model for the cascade of signaling events involved in cyst formation and growth. Our results suggest that several miRNAs may be involved in regulating signaling pathways in ADPKD. We further describe novel putative miRNA:mRNA signatures in ADPKD, which will provide additional insights into the pathogenesis of this common genetic disease in humans.
format Online
Article
Text
id pubmed-3111376
institution National Center for Biotechnology Information
language English
publishDate 2011
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-31113762011-06-10 Systems biology approach to identify transcriptome reprogramming and candidate microRNA targets during the progression of polycystic kidney disease Pandey, Priyanka Qin, Shan Ho, Jacqueline Zhou, Jing Kreidberg, Jordan A BMC Syst Biol Research Article BACKGROUND: Autosomal dominant polycystic kidney disease (ADPKD) is characterized by cyst formation throughout the kidney parenchyma. It is caused by mutations in either of two genes, PKD1 and PKD2. Mice that lack functional Pkd1 (Pkd1(-/-)), develop rapidly progressive cystic disease during embryogenesis, and serve as a model to study human ADPKD. Genome wide transcriptome reprogramming and the possible roles of micro-RNAs (miRNAs) that affect the initiation and progression of cyst formation in the Pkd1(-/- )have yet to be studied. miRNAs are small, regulatory non-coding RNAs, implicated in a wide spectrum of biological processes. Their expression levels are altered in several diseases including kidney cancer, diabetic nephropathy and PKD. RESULTS: We examined the molecular pathways that modulate renal cyst formation and growth in the Pkd1(-/- )model by performing global gene-expression profiling in embryonic kidneys at days 14.5 and 17.5. Gene Ontology and gene set enrichment analysis were used to identify overrepresented signaling pathways in Pkd1(-/- )kidneys. We found dysregulation of developmental, metabolic, and signaling pathways (e.g. Wnt, calcium, TGF-β and MAPK) in Pkd1(-/- )kidneys. Using a comparative transcriptomics approach, we determined similarities and differences with human ADPKD: ~50% overlap at the pathway level among the mis-regulated pathways was observed. By using computational approaches (TargetScan, miRanda, microT and miRDB), we then predicted miRNAs that were suggested to target the differentially expressed mRNAs. Differential expressions of 9 candidate miRNAs, miRs-10a, -30a-5p, -96, -126-5p, -182, -200a, -204, -429 and -488, and 16 genes were confirmed by qPCR. In addition, 14 candidate miRNA:mRNA reciprocal interactions were predicted. Several of the highly regulated genes and pathways were predicted as targets of miRNAs. CONCLUSIONS: We have described global transcriptional reprogramming during the progression of PKD in the Pkd1(-/- )model. We propose a model for the cascade of signaling events involved in cyst formation and growth. Our results suggest that several miRNAs may be involved in regulating signaling pathways in ADPKD. We further describe novel putative miRNA:mRNA signatures in ADPKD, which will provide additional insights into the pathogenesis of this common genetic disease in humans. BioMed Central 2011-04-25 /pmc/articles/PMC3111376/ /pubmed/21518438 http://dx.doi.org/10.1186/1752-0509-5-56 Text en Copyright ©2011 Pandey et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Pandey, Priyanka
Qin, Shan
Ho, Jacqueline
Zhou, Jing
Kreidberg, Jordan A
Systems biology approach to identify transcriptome reprogramming and candidate microRNA targets during the progression of polycystic kidney disease
title Systems biology approach to identify transcriptome reprogramming and candidate microRNA targets during the progression of polycystic kidney disease
title_full Systems biology approach to identify transcriptome reprogramming and candidate microRNA targets during the progression of polycystic kidney disease
title_fullStr Systems biology approach to identify transcriptome reprogramming and candidate microRNA targets during the progression of polycystic kidney disease
title_full_unstemmed Systems biology approach to identify transcriptome reprogramming and candidate microRNA targets during the progression of polycystic kidney disease
title_short Systems biology approach to identify transcriptome reprogramming and candidate microRNA targets during the progression of polycystic kidney disease
title_sort systems biology approach to identify transcriptome reprogramming and candidate microrna targets during the progression of polycystic kidney disease
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3111376/
https://www.ncbi.nlm.nih.gov/pubmed/21518438
http://dx.doi.org/10.1186/1752-0509-5-56
work_keys_str_mv AT pandeypriyanka systemsbiologyapproachtoidentifytranscriptomereprogrammingandcandidatemicrornatargetsduringtheprogressionofpolycystickidneydisease
AT qinshan systemsbiologyapproachtoidentifytranscriptomereprogrammingandcandidatemicrornatargetsduringtheprogressionofpolycystickidneydisease
AT hojacqueline systemsbiologyapproachtoidentifytranscriptomereprogrammingandcandidatemicrornatargetsduringtheprogressionofpolycystickidneydisease
AT zhoujing systemsbiologyapproachtoidentifytranscriptomereprogrammingandcandidatemicrornatargetsduringtheprogressionofpolycystickidneydisease
AT kreidbergjordana systemsbiologyapproachtoidentifytranscriptomereprogrammingandcandidatemicrornatargetsduringtheprogressionofpolycystickidneydisease