Cargando…
Mechanisms of single-stranded phosphorothioate modified antisense oligonucleotide accumulation in hepatocytes
Single-stranded antisense oligonucleotides (SSOs) are used to modulate the expression of genes in animal models and are being investigated as potential therapeutics. To better understand why synthetic SSOs accumulate in the same intracellular location as the target RNA, we have isolated a novel mous...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3113586/ https://www.ncbi.nlm.nih.gov/pubmed/21345934 http://dx.doi.org/10.1093/nar/gkr089 |
_version_ | 1782205949540302848 |
---|---|
author | Koller, Erich Vincent, Thomas M. Chappell, Alfred De, Soma Manoharan, Muthiah Bennett, C. Frank |
author_facet | Koller, Erich Vincent, Thomas M. Chappell, Alfred De, Soma Manoharan, Muthiah Bennett, C. Frank |
author_sort | Koller, Erich |
collection | PubMed |
description | Single-stranded antisense oligonucleotides (SSOs) are used to modulate the expression of genes in animal models and are being investigated as potential therapeutics. To better understand why synthetic SSOs accumulate in the same intracellular location as the target RNA, we have isolated a novel mouse hepatocellular SV40 large T-antigen carcinoma cell line, MHT that maintains the ability to efficiently take up SSOs over several years in culture. Sequence-specific antisense effects are demonstrated at low nanomolar concentrations. SSO accumulation into cells is both time and concentration dependent. At least two distinct cellular pathways are responsible for SSO accumulation in cells: a non-productive pathway resulting in accumulation in lysosomes, and a functional uptake pathway in which the SSO gains access to the targeted RNA. We demonstrate that functional uptake, as defined by a sequence-specific reduction in target mRNA, is inhibited by brefeldin A and chloroquine. Functional uptake is blocked by siRNA inhibitors of the adaptor protein AP2M1, but not by clathrin or caveolin. Furthermore, we document that treatment of mice with an AP2M1 siRNA blocks functional uptake into liver tissue. Functional uptake of SSO appears to be mediated by a novel clathrin- and caveolin-independent endocytotic process. |
format | Online Article Text |
id | pubmed-3113586 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-31135862011-06-14 Mechanisms of single-stranded phosphorothioate modified antisense oligonucleotide accumulation in hepatocytes Koller, Erich Vincent, Thomas M. Chappell, Alfred De, Soma Manoharan, Muthiah Bennett, C. Frank Nucleic Acids Res Molecular Biology Single-stranded antisense oligonucleotides (SSOs) are used to modulate the expression of genes in animal models and are being investigated as potential therapeutics. To better understand why synthetic SSOs accumulate in the same intracellular location as the target RNA, we have isolated a novel mouse hepatocellular SV40 large T-antigen carcinoma cell line, MHT that maintains the ability to efficiently take up SSOs over several years in culture. Sequence-specific antisense effects are demonstrated at low nanomolar concentrations. SSO accumulation into cells is both time and concentration dependent. At least two distinct cellular pathways are responsible for SSO accumulation in cells: a non-productive pathway resulting in accumulation in lysosomes, and a functional uptake pathway in which the SSO gains access to the targeted RNA. We demonstrate that functional uptake, as defined by a sequence-specific reduction in target mRNA, is inhibited by brefeldin A and chloroquine. Functional uptake is blocked by siRNA inhibitors of the adaptor protein AP2M1, but not by clathrin or caveolin. Furthermore, we document that treatment of mice with an AP2M1 siRNA blocks functional uptake into liver tissue. Functional uptake of SSO appears to be mediated by a novel clathrin- and caveolin-independent endocytotic process. Oxford University Press 2011-06 2011-02-23 /pmc/articles/PMC3113586/ /pubmed/21345934 http://dx.doi.org/10.1093/nar/gkr089 Text en © The Author(s) 2011. Published by Oxford University Press. http://creativecommons.org/licenses/by-nc/2.5 This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Molecular Biology Koller, Erich Vincent, Thomas M. Chappell, Alfred De, Soma Manoharan, Muthiah Bennett, C. Frank Mechanisms of single-stranded phosphorothioate modified antisense oligonucleotide accumulation in hepatocytes |
title | Mechanisms of single-stranded phosphorothioate modified antisense oligonucleotide accumulation in hepatocytes |
title_full | Mechanisms of single-stranded phosphorothioate modified antisense oligonucleotide accumulation in hepatocytes |
title_fullStr | Mechanisms of single-stranded phosphorothioate modified antisense oligonucleotide accumulation in hepatocytes |
title_full_unstemmed | Mechanisms of single-stranded phosphorothioate modified antisense oligonucleotide accumulation in hepatocytes |
title_short | Mechanisms of single-stranded phosphorothioate modified antisense oligonucleotide accumulation in hepatocytes |
title_sort | mechanisms of single-stranded phosphorothioate modified antisense oligonucleotide accumulation in hepatocytes |
topic | Molecular Biology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3113586/ https://www.ncbi.nlm.nih.gov/pubmed/21345934 http://dx.doi.org/10.1093/nar/gkr089 |
work_keys_str_mv | AT kollererich mechanismsofsinglestrandedphosphorothioatemodifiedantisenseoligonucleotideaccumulationinhepatocytes AT vincentthomasm mechanismsofsinglestrandedphosphorothioatemodifiedantisenseoligonucleotideaccumulationinhepatocytes AT chappellalfred mechanismsofsinglestrandedphosphorothioatemodifiedantisenseoligonucleotideaccumulationinhepatocytes AT desoma mechanismsofsinglestrandedphosphorothioatemodifiedantisenseoligonucleotideaccumulationinhepatocytes AT manoharanmuthiah mechanismsofsinglestrandedphosphorothioatemodifiedantisenseoligonucleotideaccumulationinhepatocytes AT bennettcfrank mechanismsofsinglestrandedphosphorothioatemodifiedantisenseoligonucleotideaccumulationinhepatocytes |