Cargando…
DJ-1 can inhibit microtubule associated protein 1 B formed aggregates
BACKGROUND: Abnormal accumulation and aggregation of microtubule associated proteins (MAPs) plays an important role in the pathogenesis of neurodegenerative diseases. Loss-of-function mutation of DJ-1/Park7 can cause early onset of PD. DJ-1, a molecular chaperone, can inhibit α-synuclein aggregation...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3120713/ https://www.ncbi.nlm.nih.gov/pubmed/21645326 http://dx.doi.org/10.1186/1750-1326-6-38 |
Sumario: | BACKGROUND: Abnormal accumulation and aggregation of microtubule associated proteins (MAPs) plays an important role in the pathogenesis of neurodegenerative diseases. Loss-of-function mutation of DJ-1/Park7 can cause early onset of PD. DJ-1, a molecular chaperone, can inhibit α-synuclein aggregation. Currently, little is known whether or not loss of function of DJ-1 contributes to abnormal MAPs aggregation in neurodegenerative disorders such as PD. RESULTS: We presented evidence that DJ-1 could bind to microtubule associated protein1b Light Chain (MAP1b-LC). Overexpression of DJ-1 prevented MAP1b-LC aggregation in HEK293t and SH-SY5Y cells while DJ-1 knocking down (KD) enhanced MAP1b-LC aggregation in SH-SY5Y cells. The increase in insoluble MAP1b-LC was also observed in the DJ-1 null mice brain. Moreover, in the DJ-1 KD SH-SY5Y cells, overexpression of MAP1B-LC led to endoplasmic reticulum (ER) stress-induced apoptosis. CONCLUSION: Our results suggest that DJ-1 acts as a molecular chaperone to inhibit MAP1B aggregation thus leading to neuronal apoptosis. Our study provides a novel insight into the mechanisms that underly the pathogenesis of Parkinson's disease (PD). |
---|