Cargando…
Glycation of LDL by Methylglyoxal Increases Arterial Atherogenicity: A Possible Contributor to Increased Risk of Cardiovascular Disease in Diabetes
OBJECTIVE: To study whether modification of LDL by methylglyoxal (MG), a potent arginine-directed glycating agent that is increased in diabetes, is associated with increased atherogenicity. RESEARCH DESIGN AND METHODS: Human LDL was isolated and modified by MG in vitro to minimal extent (MG(min)-LDL...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Diabetes Association
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3121424/ https://www.ncbi.nlm.nih.gov/pubmed/21617182 http://dx.doi.org/10.2337/db11-0085 |
_version_ | 1782206820723458048 |
---|---|
author | Rabbani, Naila Godfrey, Lisa Xue, Mingzhan Shaheen, Fozia Geoffrion, Michèle Milne, Ross Thornalley, Paul J. |
author_facet | Rabbani, Naila Godfrey, Lisa Xue, Mingzhan Shaheen, Fozia Geoffrion, Michèle Milne, Ross Thornalley, Paul J. |
author_sort | Rabbani, Naila |
collection | PubMed |
description | OBJECTIVE: To study whether modification of LDL by methylglyoxal (MG), a potent arginine-directed glycating agent that is increased in diabetes, is associated with increased atherogenicity. RESEARCH DESIGN AND METHODS: Human LDL was isolated and modified by MG in vitro to minimal extent (MG(min)-LDL) as occurs in vivo. Atherogenic characteristics of MG(min)-LDL were characterized: particle size, proteoglycan-binding, susceptibility to aggregation, LDL and non-LDL receptor–binding, and aortal deposition. The major site of modification of apolipoprotein B100 (apoB100) modification was investigated by mass spectrometric peptide mapping. RESULTS: MG(min)-LDL contained 1.6 molar equivalents of MG modification—mostly hydroimidazolone—as found in vivo. MG(min)-LDL had decreased particle size, increased binding to proteoglycans, and increased aggregation in vitro. Cell culture studies showed that MG(min)-LDL was bound by the LDL receptor but not by the scavenger receptor and had increased binding affinity for cell surface heparan sulfate–containing proteoglycan. Radiotracer studies in rats showed that MG(min)-LDL had a similar fractional clearance rate in plasma to unmodified LDL but increased partitioning onto the aortal wall. Mass spectrometry peptide mapping identified arginine-18 as the hotspot site of apoB100 modification in MG(min)-LDL. A computed structural model predicted that MG modification of apoB100 induces distortion, increasing exposure of the N-terminal proteoglycan–binding domain on the surface of LDL. This likely mediates particle remodeling and increases proteoglycan binding. CONCLUSIONS: MG modification of LDL forms small, dense LDL with increased atherogenicity that provides a new route to atherogenic LDL and may explain the escalation of cardiovascular risk in diabetes and the cardioprotective effect of metformin. |
format | Online Article Text |
id | pubmed-3121424 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | American Diabetes Association |
record_format | MEDLINE/PubMed |
spelling | pubmed-31214242012-07-01 Glycation of LDL by Methylglyoxal Increases Arterial Atherogenicity: A Possible Contributor to Increased Risk of Cardiovascular Disease in Diabetes Rabbani, Naila Godfrey, Lisa Xue, Mingzhan Shaheen, Fozia Geoffrion, Michèle Milne, Ross Thornalley, Paul J. Diabetes Complications OBJECTIVE: To study whether modification of LDL by methylglyoxal (MG), a potent arginine-directed glycating agent that is increased in diabetes, is associated with increased atherogenicity. RESEARCH DESIGN AND METHODS: Human LDL was isolated and modified by MG in vitro to minimal extent (MG(min)-LDL) as occurs in vivo. Atherogenic characteristics of MG(min)-LDL were characterized: particle size, proteoglycan-binding, susceptibility to aggregation, LDL and non-LDL receptor–binding, and aortal deposition. The major site of modification of apolipoprotein B100 (apoB100) modification was investigated by mass spectrometric peptide mapping. RESULTS: MG(min)-LDL contained 1.6 molar equivalents of MG modification—mostly hydroimidazolone—as found in vivo. MG(min)-LDL had decreased particle size, increased binding to proteoglycans, and increased aggregation in vitro. Cell culture studies showed that MG(min)-LDL was bound by the LDL receptor but not by the scavenger receptor and had increased binding affinity for cell surface heparan sulfate–containing proteoglycan. Radiotracer studies in rats showed that MG(min)-LDL had a similar fractional clearance rate in plasma to unmodified LDL but increased partitioning onto the aortal wall. Mass spectrometry peptide mapping identified arginine-18 as the hotspot site of apoB100 modification in MG(min)-LDL. A computed structural model predicted that MG modification of apoB100 induces distortion, increasing exposure of the N-terminal proteoglycan–binding domain on the surface of LDL. This likely mediates particle remodeling and increases proteoglycan binding. CONCLUSIONS: MG modification of LDL forms small, dense LDL with increased atherogenicity that provides a new route to atherogenic LDL and may explain the escalation of cardiovascular risk in diabetes and the cardioprotective effect of metformin. American Diabetes Association 2011-07 2011-06-20 /pmc/articles/PMC3121424/ /pubmed/21617182 http://dx.doi.org/10.2337/db11-0085 Text en © 2011 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details. |
spellingShingle | Complications Rabbani, Naila Godfrey, Lisa Xue, Mingzhan Shaheen, Fozia Geoffrion, Michèle Milne, Ross Thornalley, Paul J. Glycation of LDL by Methylglyoxal Increases Arterial Atherogenicity: A Possible Contributor to Increased Risk of Cardiovascular Disease in Diabetes |
title | Glycation of LDL by Methylglyoxal Increases Arterial Atherogenicity: A Possible Contributor to Increased Risk of Cardiovascular Disease in Diabetes |
title_full | Glycation of LDL by Methylglyoxal Increases Arterial Atherogenicity: A Possible Contributor to Increased Risk of Cardiovascular Disease in Diabetes |
title_fullStr | Glycation of LDL by Methylglyoxal Increases Arterial Atherogenicity: A Possible Contributor to Increased Risk of Cardiovascular Disease in Diabetes |
title_full_unstemmed | Glycation of LDL by Methylglyoxal Increases Arterial Atherogenicity: A Possible Contributor to Increased Risk of Cardiovascular Disease in Diabetes |
title_short | Glycation of LDL by Methylglyoxal Increases Arterial Atherogenicity: A Possible Contributor to Increased Risk of Cardiovascular Disease in Diabetes |
title_sort | glycation of ldl by methylglyoxal increases arterial atherogenicity: a possible contributor to increased risk of cardiovascular disease in diabetes |
topic | Complications |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3121424/ https://www.ncbi.nlm.nih.gov/pubmed/21617182 http://dx.doi.org/10.2337/db11-0085 |
work_keys_str_mv | AT rabbaninaila glycationofldlbymethylglyoxalincreasesarterialatherogenicityapossiblecontributortoincreasedriskofcardiovasculardiseaseindiabetes AT godfreylisa glycationofldlbymethylglyoxalincreasesarterialatherogenicityapossiblecontributortoincreasedriskofcardiovasculardiseaseindiabetes AT xuemingzhan glycationofldlbymethylglyoxalincreasesarterialatherogenicityapossiblecontributortoincreasedriskofcardiovasculardiseaseindiabetes AT shaheenfozia glycationofldlbymethylglyoxalincreasesarterialatherogenicityapossiblecontributortoincreasedriskofcardiovasculardiseaseindiabetes AT geoffrionmichele glycationofldlbymethylglyoxalincreasesarterialatherogenicityapossiblecontributortoincreasedriskofcardiovasculardiseaseindiabetes AT milneross glycationofldlbymethylglyoxalincreasesarterialatherogenicityapossiblecontributortoincreasedriskofcardiovasculardiseaseindiabetes AT thornalleypaulj glycationofldlbymethylglyoxalincreasesarterialatherogenicityapossiblecontributortoincreasedriskofcardiovasculardiseaseindiabetes |