Cargando…

Mms1 and Mms22 stabilize the replisome during replication stress

Mms1 and Mms22 form a Cul4(Ddb1)-like E3 ubiquitin ligase with the cullin Rtt101. In this complex, Rtt101 is bound to the substrate-specific adaptor Mms22 through a linker protein, Mms1. Although the Rtt101(Mms1/Mms22) ubiquitin ligase is important in promoting replication through damaged templates,...

Descripción completa

Detalles Bibliográficos
Autores principales: Vaisica, Jessica A., Baryshnikova, Anastasija, Costanzo, Michael, Boone, Charles, Brown, Grant W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The American Society for Cell Biology 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3128540/
https://www.ncbi.nlm.nih.gov/pubmed/21593207
http://dx.doi.org/10.1091/mbc.E10-10-0848
Descripción
Sumario:Mms1 and Mms22 form a Cul4(Ddb1)-like E3 ubiquitin ligase with the cullin Rtt101. In this complex, Rtt101 is bound to the substrate-specific adaptor Mms22 through a linker protein, Mms1. Although the Rtt101(Mms1/Mms22) ubiquitin ligase is important in promoting replication through damaged templates, how it does so has yet to be determined. Here we show that mms1Δ and mms22Δ cells fail to properly regulate DNA replication fork progression when replication stress is present and are defective in recovery from replication fork stress. Consistent with a role in promoting DNA replication, we find that Mms1 is enriched at sites where replication forks have stalled and that this localization requires the known binding partners of Mms1—Rtt101 and Mms22. Mms1 and Mms22 stabilize the replisome during replication stress, as binding of the fork-pausing complex components Mrc1 and Csm3, and DNA polymerase ε, at stalled replication forks is decreased in mms1Δ and mms22Δ. Taken together, these data indicate that Mms1 and Mms22 are important for maintaining the integrity of the replisome when DNA replication forks are slowed by hydroxyurea and thereby promote efficient recovery from replication stress.