Cargando…
Sesamin ameliorates oxidative stress and mortality in kainic acid-induced status epilepticus by inhibition of MAPK and COX-2 activation
BACKGROUND: Kainic acid (KA)-induced status epilepticus (SE) was involved with release of free radicals. Sesamin is a well-known antioxidant from sesame seeds and it scavenges free radicals in several brain injury models. However the neuroprotective mechanism of sesamin to KA-induced seizure has not...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3129306/ https://www.ncbi.nlm.nih.gov/pubmed/21609430 http://dx.doi.org/10.1186/1742-2094-8-57 |
_version_ | 1782207530645061632 |
---|---|
author | Hsieh, Peiyuan F Hou, Chien-Wei Yao, Pei-Wun Wu, Szu-Pei Peng, Yu-Fen Shen, Mei-Lin Lin, Ching-Huei Chao, Ya-Yun Chang, Ming-Hong Jeng, Kee-Ching |
author_facet | Hsieh, Peiyuan F Hou, Chien-Wei Yao, Pei-Wun Wu, Szu-Pei Peng, Yu-Fen Shen, Mei-Lin Lin, Ching-Huei Chao, Ya-Yun Chang, Ming-Hong Jeng, Kee-Ching |
author_sort | Hsieh, Peiyuan F |
collection | PubMed |
description | BACKGROUND: Kainic acid (KA)-induced status epilepticus (SE) was involved with release of free radicals. Sesamin is a well-known antioxidant from sesame seeds and it scavenges free radicals in several brain injury models. However the neuroprotective mechanism of sesamin to KA-induced seizure has not been studied. METHODS: Rodents (male FVB mice and Sprague-Dawley rats) were fed with sesamin extract (90% of sesamin and 10% sesamolin), 15 mg/kg or 30 mg/kg, for 3 days before KA subcutaneous injection. The effect of sesamin on KA-induced cell injury was also investigated on several cellular pathways including neuronal plasticity (RhoA), neurodegeneration (Caspase-3), and inflammation (COX-2) in PC12 cells and microglial BV-2 cells. RESULTS: Treatment with sesamin extract (30 mg/kg) significantly increased plasma α-tocopherol level 50% and 55.8% from rats without and with KA treatment, respectively. It also decreased malondialdehyde (MDA) from 145% to 117% (p = 0.017) and preserved superoxide dismutase from 55% of the vehicle control mice to 81% of sesamin-treated mice, respectively to the normal levels (p = 0.013). The treatment significantly decreased the mortality from 22% to 0% in rats. Sesamin was effective to protect PC12 cells and BV-2 cells from KA-injury in a dose-dependent manner. It decreased the release of Ca(2+), reactive oxygen species, and MDA from PC12 cells. Western blot analysis revealed that sesamin significantly reduced ERK1/2, p38 mitogen-activated protein kinases, Caspase-3, and COX-2 expression in both cells and RhoA expression in BV-2 cells. Furthermore, Sesamin was able to reduce PGE(2 )production from both cells under KA-stimulation. CONCLUSIONS: Taken together, it suggests that sesamin could protect KA-induced brain injury through anti-inflammatory and partially antioxidative mechanisms. |
format | Online Article Text |
id | pubmed-3129306 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-31293062011-07-05 Sesamin ameliorates oxidative stress and mortality in kainic acid-induced status epilepticus by inhibition of MAPK and COX-2 activation Hsieh, Peiyuan F Hou, Chien-Wei Yao, Pei-Wun Wu, Szu-Pei Peng, Yu-Fen Shen, Mei-Lin Lin, Ching-Huei Chao, Ya-Yun Chang, Ming-Hong Jeng, Kee-Ching J Neuroinflammation Research BACKGROUND: Kainic acid (KA)-induced status epilepticus (SE) was involved with release of free radicals. Sesamin is a well-known antioxidant from sesame seeds and it scavenges free radicals in several brain injury models. However the neuroprotective mechanism of sesamin to KA-induced seizure has not been studied. METHODS: Rodents (male FVB mice and Sprague-Dawley rats) were fed with sesamin extract (90% of sesamin and 10% sesamolin), 15 mg/kg or 30 mg/kg, for 3 days before KA subcutaneous injection. The effect of sesamin on KA-induced cell injury was also investigated on several cellular pathways including neuronal plasticity (RhoA), neurodegeneration (Caspase-3), and inflammation (COX-2) in PC12 cells and microglial BV-2 cells. RESULTS: Treatment with sesamin extract (30 mg/kg) significantly increased plasma α-tocopherol level 50% and 55.8% from rats without and with KA treatment, respectively. It also decreased malondialdehyde (MDA) from 145% to 117% (p = 0.017) and preserved superoxide dismutase from 55% of the vehicle control mice to 81% of sesamin-treated mice, respectively to the normal levels (p = 0.013). The treatment significantly decreased the mortality from 22% to 0% in rats. Sesamin was effective to protect PC12 cells and BV-2 cells from KA-injury in a dose-dependent manner. It decreased the release of Ca(2+), reactive oxygen species, and MDA from PC12 cells. Western blot analysis revealed that sesamin significantly reduced ERK1/2, p38 mitogen-activated protein kinases, Caspase-3, and COX-2 expression in both cells and RhoA expression in BV-2 cells. Furthermore, Sesamin was able to reduce PGE(2 )production from both cells under KA-stimulation. CONCLUSIONS: Taken together, it suggests that sesamin could protect KA-induced brain injury through anti-inflammatory and partially antioxidative mechanisms. BioMed Central 2011-05-24 /pmc/articles/PMC3129306/ /pubmed/21609430 http://dx.doi.org/10.1186/1742-2094-8-57 Text en Copyright ©2011 Hsieh et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Hsieh, Peiyuan F Hou, Chien-Wei Yao, Pei-Wun Wu, Szu-Pei Peng, Yu-Fen Shen, Mei-Lin Lin, Ching-Huei Chao, Ya-Yun Chang, Ming-Hong Jeng, Kee-Ching Sesamin ameliorates oxidative stress and mortality in kainic acid-induced status epilepticus by inhibition of MAPK and COX-2 activation |
title | Sesamin ameliorates oxidative stress and mortality in kainic acid-induced status epilepticus by inhibition of MAPK and COX-2 activation |
title_full | Sesamin ameliorates oxidative stress and mortality in kainic acid-induced status epilepticus by inhibition of MAPK and COX-2 activation |
title_fullStr | Sesamin ameliorates oxidative stress and mortality in kainic acid-induced status epilepticus by inhibition of MAPK and COX-2 activation |
title_full_unstemmed | Sesamin ameliorates oxidative stress and mortality in kainic acid-induced status epilepticus by inhibition of MAPK and COX-2 activation |
title_short | Sesamin ameliorates oxidative stress and mortality in kainic acid-induced status epilepticus by inhibition of MAPK and COX-2 activation |
title_sort | sesamin ameliorates oxidative stress and mortality in kainic acid-induced status epilepticus by inhibition of mapk and cox-2 activation |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3129306/ https://www.ncbi.nlm.nih.gov/pubmed/21609430 http://dx.doi.org/10.1186/1742-2094-8-57 |
work_keys_str_mv | AT hsiehpeiyuanf sesaminamelioratesoxidativestressandmortalityinkainicacidinducedstatusepilepticusbyinhibitionofmapkandcox2activation AT houchienwei sesaminamelioratesoxidativestressandmortalityinkainicacidinducedstatusepilepticusbyinhibitionofmapkandcox2activation AT yaopeiwun sesaminamelioratesoxidativestressandmortalityinkainicacidinducedstatusepilepticusbyinhibitionofmapkandcox2activation AT wuszupei sesaminamelioratesoxidativestressandmortalityinkainicacidinducedstatusepilepticusbyinhibitionofmapkandcox2activation AT pengyufen sesaminamelioratesoxidativestressandmortalityinkainicacidinducedstatusepilepticusbyinhibitionofmapkandcox2activation AT shenmeilin sesaminamelioratesoxidativestressandmortalityinkainicacidinducedstatusepilepticusbyinhibitionofmapkandcox2activation AT linchinghuei sesaminamelioratesoxidativestressandmortalityinkainicacidinducedstatusepilepticusbyinhibitionofmapkandcox2activation AT chaoyayun sesaminamelioratesoxidativestressandmortalityinkainicacidinducedstatusepilepticusbyinhibitionofmapkandcox2activation AT changminghong sesaminamelioratesoxidativestressandmortalityinkainicacidinducedstatusepilepticusbyinhibitionofmapkandcox2activation AT jengkeeching sesaminamelioratesoxidativestressandmortalityinkainicacidinducedstatusepilepticusbyinhibitionofmapkandcox2activation |