Cargando…

Reduced cAMP, Akt Activation and p65-c-Rel Dimerization: Mechanisms Involved in the Protective Effects of mGluR3 Agonists in Cultured Astrocytes

In recent decades, astrocytes have emerged as key pieces in the maintenance of normal functioning of the central nervous system. Any impairment in astroglial function can ultimately lead to generalized disturbance in the brain, thus pharmacological targets associated with prevention of astrocyte dea...

Descripción completa

Detalles Bibliográficos
Autores principales: Durand, Daniela, Carniglia, Lila, Caruso, Carla, Lasaga, Mercedes
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3136520/
https://www.ncbi.nlm.nih.gov/pubmed/21779400
http://dx.doi.org/10.1371/journal.pone.0022235
_version_ 1782208221697540096
author Durand, Daniela
Carniglia, Lila
Caruso, Carla
Lasaga, Mercedes
author_facet Durand, Daniela
Carniglia, Lila
Caruso, Carla
Lasaga, Mercedes
author_sort Durand, Daniela
collection PubMed
description In recent decades, astrocytes have emerged as key pieces in the maintenance of normal functioning of the central nervous system. Any impairment in astroglial function can ultimately lead to generalized disturbance in the brain, thus pharmacological targets associated with prevention of astrocyte death are actually promising. Subtype 3 of metabotropic glutamate receptors (mGluR3) is present in astrocytes, its activation exerting neuroprotective roles. In fact, we have previously demonstrated that mGluR3 selective agonists prevent nitric oxide (NO)-induced astrocyte death. However, mechanisms responsible for that cytoprotective property are still subject to study. Although inhibition of adenylyl cyclase by mGluR3 activation was extensively reported, the involvement of reduced cAMP levels in the effects of mGluR3 agonists and the association between cAMP decrease and the downstream pathways activated by mGluR3 remain neglected. Thus, we studied intracellular signaling mediating anti-apoptotic actions of mGluR3 in cultured rat astrocytes exposed to NO. In the present work, we showed that the cytoprotective effect of mGluR3 agonists (LY379268 and LY404039) requires both the reduction of intracellular cAMP levels and activation of Akt, as assessed by MTT and TUNEL techniques. Moreover, dibutyryl-cAMP impairs Akt phosphorylation induced by LY404039, indicating a relationship between mGluR3-reduced cAMP levels and PI3K/Akt pathway activation. We also demonstrated, by co-immunoprecipitation followed by western-blot, that the mGluR3 agonists not only induce per se survival-linked interaction between members of the NF-κB family p65 and c-Rel, but also impede reduction of levels of p65-c-Rel dimers caused by NO, suggesting a possible anti-apoptotic role for p65-c-Rel. All together, these data suggest that mGluR3 agonists may regulate cAMP/Akt/p65-c-Rel pathway, which would contribute to the protective effect of mGluR3 against NO challenge in astrocytes. Our results widen the knowledge about mechanisms of action of mGluR3, potential targets for the treatment of neurodegenerative disorders where a pathophysiological role for NO has been established.
format Online
Article
Text
id pubmed-3136520
institution National Center for Biotechnology Information
language English
publishDate 2011
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-31365202011-07-21 Reduced cAMP, Akt Activation and p65-c-Rel Dimerization: Mechanisms Involved in the Protective Effects of mGluR3 Agonists in Cultured Astrocytes Durand, Daniela Carniglia, Lila Caruso, Carla Lasaga, Mercedes PLoS One Research Article In recent decades, astrocytes have emerged as key pieces in the maintenance of normal functioning of the central nervous system. Any impairment in astroglial function can ultimately lead to generalized disturbance in the brain, thus pharmacological targets associated with prevention of astrocyte death are actually promising. Subtype 3 of metabotropic glutamate receptors (mGluR3) is present in astrocytes, its activation exerting neuroprotective roles. In fact, we have previously demonstrated that mGluR3 selective agonists prevent nitric oxide (NO)-induced astrocyte death. However, mechanisms responsible for that cytoprotective property are still subject to study. Although inhibition of adenylyl cyclase by mGluR3 activation was extensively reported, the involvement of reduced cAMP levels in the effects of mGluR3 agonists and the association between cAMP decrease and the downstream pathways activated by mGluR3 remain neglected. Thus, we studied intracellular signaling mediating anti-apoptotic actions of mGluR3 in cultured rat astrocytes exposed to NO. In the present work, we showed that the cytoprotective effect of mGluR3 agonists (LY379268 and LY404039) requires both the reduction of intracellular cAMP levels and activation of Akt, as assessed by MTT and TUNEL techniques. Moreover, dibutyryl-cAMP impairs Akt phosphorylation induced by LY404039, indicating a relationship between mGluR3-reduced cAMP levels and PI3K/Akt pathway activation. We also demonstrated, by co-immunoprecipitation followed by western-blot, that the mGluR3 agonists not only induce per se survival-linked interaction between members of the NF-κB family p65 and c-Rel, but also impede reduction of levels of p65-c-Rel dimers caused by NO, suggesting a possible anti-apoptotic role for p65-c-Rel. All together, these data suggest that mGluR3 agonists may regulate cAMP/Akt/p65-c-Rel pathway, which would contribute to the protective effect of mGluR3 against NO challenge in astrocytes. Our results widen the knowledge about mechanisms of action of mGluR3, potential targets for the treatment of neurodegenerative disorders where a pathophysiological role for NO has been established. Public Library of Science 2011-07-14 /pmc/articles/PMC3136520/ /pubmed/21779400 http://dx.doi.org/10.1371/journal.pone.0022235 Text en Durand et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Durand, Daniela
Carniglia, Lila
Caruso, Carla
Lasaga, Mercedes
Reduced cAMP, Akt Activation and p65-c-Rel Dimerization: Mechanisms Involved in the Protective Effects of mGluR3 Agonists in Cultured Astrocytes
title Reduced cAMP, Akt Activation and p65-c-Rel Dimerization: Mechanisms Involved in the Protective Effects of mGluR3 Agonists in Cultured Astrocytes
title_full Reduced cAMP, Akt Activation and p65-c-Rel Dimerization: Mechanisms Involved in the Protective Effects of mGluR3 Agonists in Cultured Astrocytes
title_fullStr Reduced cAMP, Akt Activation and p65-c-Rel Dimerization: Mechanisms Involved in the Protective Effects of mGluR3 Agonists in Cultured Astrocytes
title_full_unstemmed Reduced cAMP, Akt Activation and p65-c-Rel Dimerization: Mechanisms Involved in the Protective Effects of mGluR3 Agonists in Cultured Astrocytes
title_short Reduced cAMP, Akt Activation and p65-c-Rel Dimerization: Mechanisms Involved in the Protective Effects of mGluR3 Agonists in Cultured Astrocytes
title_sort reduced camp, akt activation and p65-c-rel dimerization: mechanisms involved in the protective effects of mglur3 agonists in cultured astrocytes
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3136520/
https://www.ncbi.nlm.nih.gov/pubmed/21779400
http://dx.doi.org/10.1371/journal.pone.0022235
work_keys_str_mv AT duranddaniela reducedcampaktactivationandp65creldimerizationmechanismsinvolvedintheprotectiveeffectsofmglur3agonistsinculturedastrocytes
AT carniglialila reducedcampaktactivationandp65creldimerizationmechanismsinvolvedintheprotectiveeffectsofmglur3agonistsinculturedastrocytes
AT carusocarla reducedcampaktactivationandp65creldimerizationmechanismsinvolvedintheprotectiveeffectsofmglur3agonistsinculturedastrocytes
AT lasagamercedes reducedcampaktactivationandp65creldimerizationmechanismsinvolvedintheprotectiveeffectsofmglur3agonistsinculturedastrocytes