Cargando…
Transcriptional gene silencing in mammalian cells by miRNA mimics that target gene promoters
Synthetic small duplex RNAs that are fully complementary to gene promoters can silence transcription in mammalian cells. microRNAs (miRNAs) are endogenous small regulatory RNAs that sequence specifically regulate gene expression. We have developed a computational method to identify potential miRNA t...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3141263/ https://www.ncbi.nlm.nih.gov/pubmed/21427083 http://dx.doi.org/10.1093/nar/gkr155 |
_version_ | 1782208649574219776 |
---|---|
author | Younger, Scott T. Corey, David R. |
author_facet | Younger, Scott T. Corey, David R. |
author_sort | Younger, Scott T. |
collection | PubMed |
description | Synthetic small duplex RNAs that are fully complementary to gene promoters can silence transcription in mammalian cells. microRNAs (miRNAs) are endogenous small regulatory RNAs that sequence specifically regulate gene expression. We have developed a computational method to identify potential miRNA target sites within gene promoters. Ten candidate miRNAs predicted to target the human progesterone receptor (PR) gene promoter were tested for their ability to modulate gene expression. Several miRNA mimics inhibited PR gene expression and miR-423-5p, which targets a highly conserved region of the PR promoter, was chosen for detailed analysis. Chromatin immunoprecipitation revealed that the miR-423-5p mimic decreased RNA polymerase II occupancy and increased histone H3 lysine 9 dimethylation (H3K9me2) at the PR promoter, indicative of chromatin-level silencing. Transcriptional silencing was transient, independent of DNA methylation, and associated with recruitment of Argonaute 2 (AGO2) to a non-coding RNA (ncRNA) transcript that overlaps the PR gene promoter. The miR-423-5p mimic also silenced expression of immunoglobulin superfamily member 1 (IGSF1), an additional gene with a predicted target site within its promoter. While additional investigations of endogenous miRNA function will be necessary, these observations suggest that recognition of gene promoters by miRNAs may be a natural and general mechanism for regulating gene transcription. |
format | Online Article Text |
id | pubmed-3141263 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-31412632011-07-22 Transcriptional gene silencing in mammalian cells by miRNA mimics that target gene promoters Younger, Scott T. Corey, David R. Nucleic Acids Res RNA Synthetic small duplex RNAs that are fully complementary to gene promoters can silence transcription in mammalian cells. microRNAs (miRNAs) are endogenous small regulatory RNAs that sequence specifically regulate gene expression. We have developed a computational method to identify potential miRNA target sites within gene promoters. Ten candidate miRNAs predicted to target the human progesterone receptor (PR) gene promoter were tested for their ability to modulate gene expression. Several miRNA mimics inhibited PR gene expression and miR-423-5p, which targets a highly conserved region of the PR promoter, was chosen for detailed analysis. Chromatin immunoprecipitation revealed that the miR-423-5p mimic decreased RNA polymerase II occupancy and increased histone H3 lysine 9 dimethylation (H3K9me2) at the PR promoter, indicative of chromatin-level silencing. Transcriptional silencing was transient, independent of DNA methylation, and associated with recruitment of Argonaute 2 (AGO2) to a non-coding RNA (ncRNA) transcript that overlaps the PR gene promoter. The miR-423-5p mimic also silenced expression of immunoglobulin superfamily member 1 (IGSF1), an additional gene with a predicted target site within its promoter. While additional investigations of endogenous miRNA function will be necessary, these observations suggest that recognition of gene promoters by miRNAs may be a natural and general mechanism for regulating gene transcription. Oxford University Press 2011-07 2011-03-22 /pmc/articles/PMC3141263/ /pubmed/21427083 http://dx.doi.org/10.1093/nar/gkr155 Text en © The Author(s) 2011. Published by Oxford University Press. http://creativecommons.org/licenses/by-nc/2.5 This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | RNA Younger, Scott T. Corey, David R. Transcriptional gene silencing in mammalian cells by miRNA mimics that target gene promoters |
title | Transcriptional gene silencing in mammalian cells by miRNA mimics that target gene promoters |
title_full | Transcriptional gene silencing in mammalian cells by miRNA mimics that target gene promoters |
title_fullStr | Transcriptional gene silencing in mammalian cells by miRNA mimics that target gene promoters |
title_full_unstemmed | Transcriptional gene silencing in mammalian cells by miRNA mimics that target gene promoters |
title_short | Transcriptional gene silencing in mammalian cells by miRNA mimics that target gene promoters |
title_sort | transcriptional gene silencing in mammalian cells by mirna mimics that target gene promoters |
topic | RNA |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3141263/ https://www.ncbi.nlm.nih.gov/pubmed/21427083 http://dx.doi.org/10.1093/nar/gkr155 |
work_keys_str_mv | AT youngerscottt transcriptionalgenesilencinginmammaliancellsbymirnamimicsthattargetgenepromoters AT coreydavidr transcriptionalgenesilencinginmammaliancellsbymirnamimicsthattargetgenepromoters |