Cargando…
Proteomic Analysis Shows Synthetic Oleanane Triterpenoid Binds to mTOR
New multifunctional drugs that target multiple disease-relevant networks offer a novel approach to the prevention and treatment of many diseases. New synthetic oleanane triterpenoids (SO), such as CDDO (2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid) and its derivatives, are multifunctional compounds...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3144948/ https://www.ncbi.nlm.nih.gov/pubmed/21818401 http://dx.doi.org/10.1371/journal.pone.0022862 |
_version_ | 1782209060043489280 |
---|---|
author | Yore, Mark M. Kettenbach, Arminja N. Sporn, Michael B. Gerber, Scott A. Liby, Karen T. |
author_facet | Yore, Mark M. Kettenbach, Arminja N. Sporn, Michael B. Gerber, Scott A. Liby, Karen T. |
author_sort | Yore, Mark M. |
collection | PubMed |
description | New multifunctional drugs that target multiple disease-relevant networks offer a novel approach to the prevention and treatment of many diseases. New synthetic oleanane triterpenoids (SO), such as CDDO (2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid) and its derivatives, are multifunctional compounds originally developed for the prevention and treatment of inflammation and oxidative stress. However, the protein binding partners and mechanisms of action of these SO are not yet fully understood. Here we characterize the putative target profile of one SO, CDDO-Imidazolide (CDDO-Im), by combining affinity purification with mass spectroscopic proteomic analysis to identify 577 candidate binding proteins in whole cells. This SO pharmaco-interactome consists of a diverse but interconnected set of signaling networks; bioinformatic analysis of the protein interactome identified canonical signaling pathways targeted by the SO, including retinoic acid receptor (RAR), estrogen receptor (ER), insulin receptor (IR), janus kinase/signal transducers and activators of transcription (JAK/STAT), and phosphatase and tensin homolog (PTEN). Pull-down studies then further validated a subset of the putative targets. In addition, we now show for the first time that the mammalian target of rapamycin (mTOR) is a direct target of CDDO-Im. We also show that CDDO-Im blocks insulin-induced activation of this pathway by binding to mTOR and inhibiting its kinase activity. Our basic studies confirm that the SO, CDDO-Im, acts on a protein network to elicit its pharmacological activity. |
format | Online Article Text |
id | pubmed-3144948 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-31449482011-08-04 Proteomic Analysis Shows Synthetic Oleanane Triterpenoid Binds to mTOR Yore, Mark M. Kettenbach, Arminja N. Sporn, Michael B. Gerber, Scott A. Liby, Karen T. PLoS One Research Article New multifunctional drugs that target multiple disease-relevant networks offer a novel approach to the prevention and treatment of many diseases. New synthetic oleanane triterpenoids (SO), such as CDDO (2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid) and its derivatives, are multifunctional compounds originally developed for the prevention and treatment of inflammation and oxidative stress. However, the protein binding partners and mechanisms of action of these SO are not yet fully understood. Here we characterize the putative target profile of one SO, CDDO-Imidazolide (CDDO-Im), by combining affinity purification with mass spectroscopic proteomic analysis to identify 577 candidate binding proteins in whole cells. This SO pharmaco-interactome consists of a diverse but interconnected set of signaling networks; bioinformatic analysis of the protein interactome identified canonical signaling pathways targeted by the SO, including retinoic acid receptor (RAR), estrogen receptor (ER), insulin receptor (IR), janus kinase/signal transducers and activators of transcription (JAK/STAT), and phosphatase and tensin homolog (PTEN). Pull-down studies then further validated a subset of the putative targets. In addition, we now show for the first time that the mammalian target of rapamycin (mTOR) is a direct target of CDDO-Im. We also show that CDDO-Im blocks insulin-induced activation of this pathway by binding to mTOR and inhibiting its kinase activity. Our basic studies confirm that the SO, CDDO-Im, acts on a protein network to elicit its pharmacological activity. Public Library of Science 2011-07-27 /pmc/articles/PMC3144948/ /pubmed/21818401 http://dx.doi.org/10.1371/journal.pone.0022862 Text en Yore et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Yore, Mark M. Kettenbach, Arminja N. Sporn, Michael B. Gerber, Scott A. Liby, Karen T. Proteomic Analysis Shows Synthetic Oleanane Triterpenoid Binds to mTOR |
title | Proteomic Analysis Shows Synthetic Oleanane Triterpenoid Binds to mTOR |
title_full | Proteomic Analysis Shows Synthetic Oleanane Triterpenoid Binds to mTOR |
title_fullStr | Proteomic Analysis Shows Synthetic Oleanane Triterpenoid Binds to mTOR |
title_full_unstemmed | Proteomic Analysis Shows Synthetic Oleanane Triterpenoid Binds to mTOR |
title_short | Proteomic Analysis Shows Synthetic Oleanane Triterpenoid Binds to mTOR |
title_sort | proteomic analysis shows synthetic oleanane triterpenoid binds to mtor |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3144948/ https://www.ncbi.nlm.nih.gov/pubmed/21818401 http://dx.doi.org/10.1371/journal.pone.0022862 |
work_keys_str_mv | AT yoremarkm proteomicanalysisshowssyntheticoleananetriterpenoidbindstomtor AT kettenbacharminjan proteomicanalysisshowssyntheticoleananetriterpenoidbindstomtor AT spornmichaelb proteomicanalysisshowssyntheticoleananetriterpenoidbindstomtor AT gerberscotta proteomicanalysisshowssyntheticoleananetriterpenoidbindstomtor AT libykarent proteomicanalysisshowssyntheticoleananetriterpenoidbindstomtor |