Cargando…
Bias detection and correction in RNA-Sequencing data
BACKGROUND: High throughput sequencing technology provides us unprecedented opportunities to study transcriptome dynamics. Compared to microarray-based gene expression profiling, RNA-Seq has many advantages, such as high resolution, low background, and ability to identify novel transcripts. Moreover...
Autores principales: | Zheng, Wei, Chung, Lisa M, Zhao, Hongyu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3149584/ https://www.ncbi.nlm.nih.gov/pubmed/21771300 http://dx.doi.org/10.1186/1471-2105-12-290 |
Ejemplares similares
-
Sequence-specific bias correction for RNA-seq data using recurrent neural networks
por: Zhang, Yao-zhong, et al.
Publicado: (2017) -
Biases in small RNA deep sequencing data
por: Raabe, Carsten A., et al.
Publicado: (2014) -
Detecting and correcting the bias of unmeasured factors using perturbation analysis: a data-mining approach
por: Lee, Wen-Chung
Publicado: (2014) -
Analysis and correction of compositional bias in sparse sequencing count data
por: Kumar, M. Senthil, et al.
Publicado: (2018) -
Correcting nucleotide-specific biases in high-throughput sequencing data
por: Wang, Jeremy R., et al.
Publicado: (2017)