Cargando…

Dimerization of Plasmodium vivax DBP is induced upon receptor binding and drives recognition of DARC

Plasmodium vivax and Plasmodium knowlesi depend on the Duffy-Binding Protein DBL domain (RII-PvDBP or RII-PkDBP) engaging Duffy Antigen/Receptor for Chemokines on red blood cells during invasion. Inhibition of this key interaction provides an excellent opportunity for parasite control. There are com...

Descripción completa

Detalles Bibliográficos
Autores principales: Batchelor, Joseph D., Zahm, Jacob A., Tolia, Niraj H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3150435/
https://www.ncbi.nlm.nih.gov/pubmed/21743458
http://dx.doi.org/10.1038/nsmb.2088
Descripción
Sumario:Plasmodium vivax and Plasmodium knowlesi depend on the Duffy-Binding Protein DBL domain (RII-PvDBP or RII-PkDBP) engaging Duffy Antigen/Receptor for Chemokines on red blood cells during invasion. Inhibition of this key interaction provides an excellent opportunity for parasite control. There are competing models for whether Plasmodium ligands engage receptors as monomers or dimers, resolution of which has profound implications for parasite biology and control. We report crystallographic, solution and functional studies of RII-PvDBP, showing dimerization is required for and driven by receptor engagement. This work provides a unifying framework for prior studies and accounts for the action of naturally-acquired blocking-antibodies and the mechanism of immune evasion. We show dimerization is conserved in DBL-domain receptor-engagement, and propose receptor-mediated ligand-dimerization drives receptor affinity and specificity. Since dimerization is prevalent in signaling, our studies raise the possibility that induced dimerization activates pathways for invasion.