Cargando…
Predicting a small molecule-kinase interaction map: A machine learning approach
BACKGROUND: We present a machine learning approach to the problem of protein ligand interaction prediction. We focus on a set of binding data obtained from 113 different protein kinases and 20 inhibitors. It was attained through ATP site-dependent binding competition assays and constitutes the first...
Autores principales: | Buchwald, Fabian, Richter, Lothar, Kramer, Stefan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3151211/ https://www.ncbi.nlm.nih.gov/pubmed/21708012 http://dx.doi.org/10.1186/1758-2946-3-22 |
Ejemplares similares
-
Machine learning approaches to optimize small-molecule inhibitors for RNA targeting
por: Grimberg, Hadar, et al.
Publicado: (2022) -
ToxiM: A Toxicity Prediction Tool for Small Molecules Developed Using Machine Learning and Chemoinformatics Approaches
por: Sharma, Ashok K., et al.
Publicado: (2017) -
The METLIN small molecule dataset for machine learning-based retention time prediction
por: Domingo-Almenara, Xavier, et al.
Publicado: (2019) -
Prediction of small-molecule compound solubility in organic solvents by machine learning algorithms
por: Ye, Zhuyifan, et al.
Publicado: (2021) -
Vienna LiverTox Workspace—A Set of Machine Learning Models for Prediction of Interactions Profiles of Small Molecules With Transporters Relevant for Regulatory Agencies
por: Montanari, Floriane, et al.
Publicado: (2020)