Cargando…
Threshold selection in gene co-expression networks using spectral graph theory techniques
BACKGROUND: Gene co-expression networks are often constructed by computing some measure of similarity between expression levels of gene transcripts and subsequently applying a high-pass filter to remove all but the most likely biologically-significant relationships. The selection of this expression...
Autores principales: | Perkins, Andy D, Langston, Michael A |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3152776/ https://www.ncbi.nlm.nih.gov/pubmed/19811688 http://dx.doi.org/10.1186/1471-2105-10-S11-S4 |
Ejemplares similares
-
Novel implementation of conditional co-regulation by graph theory to derive co-expressed genes from microarray data
por: Rawat, Arun, et al.
Publicado: (2008) -
Differential reconstructed gene interaction networks for deriving toxicity threshold in chemical risk assessment
por: Yang, Yi, et al.
Publicado: (2013) -
Applications of graph theory in protein structure identification
por: Yan, Yan, et al.
Publicado: (2011) -
A predictive model for secondary RNA structure using graph theory and a neural network
por: Koessler, Denise R, et al.
Publicado: (2010) -
Integrating phenotype and gene expression data for predicting gene function
por: Malone, Brandon M, et al.
Publicado: (2009)