Cargando…

WNT5A Signaling Contributes to Aβ-Induced Neuroinflammation and Neurotoxicity

Neurodegenration is a pathological hallmark of Alzheimer's disease (AD), but the underlying molecular mechanism remains elusive. Here, we present evidence that reveals a crucial role of Wnt5a signaling in this process. We showed that Wnt5a and its receptor Frizzled-5 (Fz5) were up-regulated in...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Bei, Zhong, Ling, Yang, Xiangling, Andersson, Tommy, Huang, Min, Tang, Shao-Jun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3157339/
https://www.ncbi.nlm.nih.gov/pubmed/21857966
http://dx.doi.org/10.1371/journal.pone.0022920
Descripción
Sumario:Neurodegenration is a pathological hallmark of Alzheimer's disease (AD), but the underlying molecular mechanism remains elusive. Here, we present evidence that reveals a crucial role of Wnt5a signaling in this process. We showed that Wnt5a and its receptor Frizzled-5 (Fz5) were up-regulated in the AD mouse brain, and that beta-amyloid peptide (Aβ), a major constituent of amyloid plaques, stimulated Wnt5a and Fz5 expression in primary cortical cultures; these observations indicate that Wnt5a signaling could be aberrantly activated during AD pathogenesis. In support of such a possibility, we observed that inhibition of Wnt5a signaling attenuated while activation of Wnt5a signaling enhanced Aβ-evoked neurotoxicity, suggesting a role of Wnt5a signaling in AD-related neurodegeneration. Furthermore, we also demonstrated that Aβ-induced neurotoxicity depends on inflammatory processes, and that activation of Wnt5a signaling elicited the expression of proinflammatory cytokines IL-1β and TNF-α whereas inhibition of Wnt5a signaling attenuated the Aβ-induced expression of the cytokines in cortical cultures. Our findings collectively suggest that aberrantly up-regulated Wnt5a signaling is a crucial pathological step that contributes to AD-related neurodegeneration by regulating neuroinflammation.