Cargando…
Streptozotocin-Induced Early Thermal Hyperalgesia is independent of Glycemic State of Rats: Role of Transient Receptor Potential Vanilloid 1(TRPV1) and Inflammatory mediators
BACKGROUND: Streptozotocin (STZ) is used as a common tool to induce diabetes and to study diabetes-induced complications including diabetic peripheral neuropathy (DPN). Previously, we have reported that STZ induces a direct effect on neurons through expression and function of the Transient receptor...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3157448/ https://www.ncbi.nlm.nih.gov/pubmed/21794120 http://dx.doi.org/10.1186/1744-8069-7-52 |
_version_ | 1782210307980001280 |
---|---|
author | Bishnoi, Mahendra Bosgraaf, Christine A Abooj, Mruvil Zhong, Linlin Premkumar, Louis S |
author_facet | Bishnoi, Mahendra Bosgraaf, Christine A Abooj, Mruvil Zhong, Linlin Premkumar, Louis S |
author_sort | Bishnoi, Mahendra |
collection | PubMed |
description | BACKGROUND: Streptozotocin (STZ) is used as a common tool to induce diabetes and to study diabetes-induced complications including diabetic peripheral neuropathy (DPN). Previously, we have reported that STZ induces a direct effect on neurons through expression and function of the Transient receptor potential vanilloid 1 (TRPV1) channel in sensory neurons resulting in thermal hyperalgesia, even in non-diabetic STZ-treated mice. In the present study, we investigated the role of expression and function of TRPV1 in the central sensory nerve terminals in the spinal cord in STZ-induced hyperalgesia in rats. RESULTS: We found that a proportion of STZ-treated rats were normoglycemic but still exhibited thermal hyperalgesia and mechanical allodynia. Immunohistochemical data show that STZ treatment, irrespective of glycemic state of the animal, caused microglial activation and increased expression of TRPV1 in spinal dorsal horn. Further, there was a significant increase in the levels of pro-inflammatory mediators (IL-1β, IL-6 and TNF-α) in spinal cord tissue, irrespective of the glycemic state. Capsaicin-stimulated release of calcitonin gene related peptide (CGRP) was significantly higher in the spinal cord of STZ-treated animals. Intrathecal administration of resiniferatoxin (RTX), a potent TRPV1 agonist, significantly attenuated STZ-induced thermal hyperalgesia, but not mechanical allodynia. RTX treatment also prevented the increase in TRPV1-mediated neuropeptide release in the spinal cord tissue. CONCLUSIONS: From these results, it is concluded that TRPV1 is an integral component of initiating and maintaining inflammatory thermal hyperalgesia, which can be alleviated by intrathecal administration of RTX. Further, the results suggest that enhanced expression and inflammation-induced sensitization of TRPV1 at the spinal cord may play a role in central sensitization in STZ-induced neuropathy. |
format | Online Article Text |
id | pubmed-3157448 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-31574482011-08-18 Streptozotocin-Induced Early Thermal Hyperalgesia is independent of Glycemic State of Rats: Role of Transient Receptor Potential Vanilloid 1(TRPV1) and Inflammatory mediators Bishnoi, Mahendra Bosgraaf, Christine A Abooj, Mruvil Zhong, Linlin Premkumar, Louis S Mol Pain Research BACKGROUND: Streptozotocin (STZ) is used as a common tool to induce diabetes and to study diabetes-induced complications including diabetic peripheral neuropathy (DPN). Previously, we have reported that STZ induces a direct effect on neurons through expression and function of the Transient receptor potential vanilloid 1 (TRPV1) channel in sensory neurons resulting in thermal hyperalgesia, even in non-diabetic STZ-treated mice. In the present study, we investigated the role of expression and function of TRPV1 in the central sensory nerve terminals in the spinal cord in STZ-induced hyperalgesia in rats. RESULTS: We found that a proportion of STZ-treated rats were normoglycemic but still exhibited thermal hyperalgesia and mechanical allodynia. Immunohistochemical data show that STZ treatment, irrespective of glycemic state of the animal, caused microglial activation and increased expression of TRPV1 in spinal dorsal horn. Further, there was a significant increase in the levels of pro-inflammatory mediators (IL-1β, IL-6 and TNF-α) in spinal cord tissue, irrespective of the glycemic state. Capsaicin-stimulated release of calcitonin gene related peptide (CGRP) was significantly higher in the spinal cord of STZ-treated animals. Intrathecal administration of resiniferatoxin (RTX), a potent TRPV1 agonist, significantly attenuated STZ-induced thermal hyperalgesia, but not mechanical allodynia. RTX treatment also prevented the increase in TRPV1-mediated neuropeptide release in the spinal cord tissue. CONCLUSIONS: From these results, it is concluded that TRPV1 is an integral component of initiating and maintaining inflammatory thermal hyperalgesia, which can be alleviated by intrathecal administration of RTX. Further, the results suggest that enhanced expression and inflammation-induced sensitization of TRPV1 at the spinal cord may play a role in central sensitization in STZ-induced neuropathy. BioMed Central 2011-07-27 /pmc/articles/PMC3157448/ /pubmed/21794120 http://dx.doi.org/10.1186/1744-8069-7-52 Text en Copyright ©2011 Bishnoi et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Bishnoi, Mahendra Bosgraaf, Christine A Abooj, Mruvil Zhong, Linlin Premkumar, Louis S Streptozotocin-Induced Early Thermal Hyperalgesia is independent of Glycemic State of Rats: Role of Transient Receptor Potential Vanilloid 1(TRPV1) and Inflammatory mediators |
title | Streptozotocin-Induced Early Thermal Hyperalgesia is independent of Glycemic State of Rats: Role of Transient Receptor Potential Vanilloid 1(TRPV1) and Inflammatory mediators |
title_full | Streptozotocin-Induced Early Thermal Hyperalgesia is independent of Glycemic State of Rats: Role of Transient Receptor Potential Vanilloid 1(TRPV1) and Inflammatory mediators |
title_fullStr | Streptozotocin-Induced Early Thermal Hyperalgesia is independent of Glycemic State of Rats: Role of Transient Receptor Potential Vanilloid 1(TRPV1) and Inflammatory mediators |
title_full_unstemmed | Streptozotocin-Induced Early Thermal Hyperalgesia is independent of Glycemic State of Rats: Role of Transient Receptor Potential Vanilloid 1(TRPV1) and Inflammatory mediators |
title_short | Streptozotocin-Induced Early Thermal Hyperalgesia is independent of Glycemic State of Rats: Role of Transient Receptor Potential Vanilloid 1(TRPV1) and Inflammatory mediators |
title_sort | streptozotocin-induced early thermal hyperalgesia is independent of glycemic state of rats: role of transient receptor potential vanilloid 1(trpv1) and inflammatory mediators |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3157448/ https://www.ncbi.nlm.nih.gov/pubmed/21794120 http://dx.doi.org/10.1186/1744-8069-7-52 |
work_keys_str_mv | AT bishnoimahendra streptozotocininducedearlythermalhyperalgesiaisindependentofglycemicstateofratsroleoftransientreceptorpotentialvanilloid1trpv1andinflammatorymediators AT bosgraafchristinea streptozotocininducedearlythermalhyperalgesiaisindependentofglycemicstateofratsroleoftransientreceptorpotentialvanilloid1trpv1andinflammatorymediators AT aboojmruvil streptozotocininducedearlythermalhyperalgesiaisindependentofglycemicstateofratsroleoftransientreceptorpotentialvanilloid1trpv1andinflammatorymediators AT zhonglinlin streptozotocininducedearlythermalhyperalgesiaisindependentofglycemicstateofratsroleoftransientreceptorpotentialvanilloid1trpv1andinflammatorymediators AT premkumarlouiss streptozotocininducedearlythermalhyperalgesiaisindependentofglycemicstateofratsroleoftransientreceptorpotentialvanilloid1trpv1andinflammatorymediators |