Cargando…

A novel bioinformatics pipeline for identification and characterization of fusion transcripts in breast cancer and normal cell lines

SnowShoes-FTD, developed for fusion transcript detection in paired-end mRNA-Seq data, employs multiple steps of false positive filtering to nominate fusion transcripts with near 100% confidence. Unique features include: (i) identification of multiple fusion isoforms from two gene partners; (ii) pred...

Descripción completa

Detalles Bibliográficos
Autores principales: Asmann, Yan W., Hossain, Asif, Necela, Brian M., Middha, Sumit, Kalari, Krishna R., Sun, Zhifu, Chai, High-Seng, Williamson, David W., Radisky, Derek, Schroth, Gary P., Kocher, Jean-Pierre A., Perez, Edith A., Thompson, E. Aubrey
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3159479/
https://www.ncbi.nlm.nih.gov/pubmed/21622959
http://dx.doi.org/10.1093/nar/gkr362
_version_ 1782210477023035392
author Asmann, Yan W.
Hossain, Asif
Necela, Brian M.
Middha, Sumit
Kalari, Krishna R.
Sun, Zhifu
Chai, High-Seng
Williamson, David W.
Radisky, Derek
Schroth, Gary P.
Kocher, Jean-Pierre A.
Perez, Edith A.
Thompson, E. Aubrey
author_facet Asmann, Yan W.
Hossain, Asif
Necela, Brian M.
Middha, Sumit
Kalari, Krishna R.
Sun, Zhifu
Chai, High-Seng
Williamson, David W.
Radisky, Derek
Schroth, Gary P.
Kocher, Jean-Pierre A.
Perez, Edith A.
Thompson, E. Aubrey
author_sort Asmann, Yan W.
collection PubMed
description SnowShoes-FTD, developed for fusion transcript detection in paired-end mRNA-Seq data, employs multiple steps of false positive filtering to nominate fusion transcripts with near 100% confidence. Unique features include: (i) identification of multiple fusion isoforms from two gene partners; (ii) prediction of genomic rearrangements; (iii) identification of exon fusion boundaries; (iv) generation of a 5′–3′ fusion spanning sequence for PCR validation; and (v) prediction of the protein sequences, including frame shift and amino acid insertions. We applied SnowShoes-FTD to identify 50 fusion candidates in 22 breast cancer and 9 non-transformed cell lines. Five additional fusion candidates with two isoforms were confirmed. In all, 30 of 55 fusion candidates had in-frame protein products. No fusion transcripts were detected in non-transformed cells. Consideration of the possible functions of a subset of predicted fusion proteins suggests several potentially important functions in transformation, including a possible new mechanism for overexpression of ERBB2 in a HER-positive cell line. The source code of SnowShoes-FTD is provided in two formats: one configured to run on the Sun Grid Engine for parallelization, and the other formatted to run on a single LINUX node. Executables in PERL are available for download from our web site: http://mayoresearch.mayo.edu/mayo/research/biostat/stand-alone-packages.cfm.
format Online
Article
Text
id pubmed-3159479
institution National Center for Biotechnology Information
language English
publishDate 2011
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-31594792011-08-22 A novel bioinformatics pipeline for identification and characterization of fusion transcripts in breast cancer and normal cell lines Asmann, Yan W. Hossain, Asif Necela, Brian M. Middha, Sumit Kalari, Krishna R. Sun, Zhifu Chai, High-Seng Williamson, David W. Radisky, Derek Schroth, Gary P. Kocher, Jean-Pierre A. Perez, Edith A. Thompson, E. Aubrey Nucleic Acids Res Methods Online SnowShoes-FTD, developed for fusion transcript detection in paired-end mRNA-Seq data, employs multiple steps of false positive filtering to nominate fusion transcripts with near 100% confidence. Unique features include: (i) identification of multiple fusion isoforms from two gene partners; (ii) prediction of genomic rearrangements; (iii) identification of exon fusion boundaries; (iv) generation of a 5′–3′ fusion spanning sequence for PCR validation; and (v) prediction of the protein sequences, including frame shift and amino acid insertions. We applied SnowShoes-FTD to identify 50 fusion candidates in 22 breast cancer and 9 non-transformed cell lines. Five additional fusion candidates with two isoforms were confirmed. In all, 30 of 55 fusion candidates had in-frame protein products. No fusion transcripts were detected in non-transformed cells. Consideration of the possible functions of a subset of predicted fusion proteins suggests several potentially important functions in transformation, including a possible new mechanism for overexpression of ERBB2 in a HER-positive cell line. The source code of SnowShoes-FTD is provided in two formats: one configured to run on the Sun Grid Engine for parallelization, and the other formatted to run on a single LINUX node. Executables in PERL are available for download from our web site: http://mayoresearch.mayo.edu/mayo/research/biostat/stand-alone-packages.cfm. Oxford University Press 2011-08 2011-05-27 /pmc/articles/PMC3159479/ /pubmed/21622959 http://dx.doi.org/10.1093/nar/gkr362 Text en © The Author(s) 2011. Published by Oxford University Press. http://creativecommons.org/licenses/by-nc/3.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Methods Online
Asmann, Yan W.
Hossain, Asif
Necela, Brian M.
Middha, Sumit
Kalari, Krishna R.
Sun, Zhifu
Chai, High-Seng
Williamson, David W.
Radisky, Derek
Schroth, Gary P.
Kocher, Jean-Pierre A.
Perez, Edith A.
Thompson, E. Aubrey
A novel bioinformatics pipeline for identification and characterization of fusion transcripts in breast cancer and normal cell lines
title A novel bioinformatics pipeline for identification and characterization of fusion transcripts in breast cancer and normal cell lines
title_full A novel bioinformatics pipeline for identification and characterization of fusion transcripts in breast cancer and normal cell lines
title_fullStr A novel bioinformatics pipeline for identification and characterization of fusion transcripts in breast cancer and normal cell lines
title_full_unstemmed A novel bioinformatics pipeline for identification and characterization of fusion transcripts in breast cancer and normal cell lines
title_short A novel bioinformatics pipeline for identification and characterization of fusion transcripts in breast cancer and normal cell lines
title_sort novel bioinformatics pipeline for identification and characterization of fusion transcripts in breast cancer and normal cell lines
topic Methods Online
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3159479/
https://www.ncbi.nlm.nih.gov/pubmed/21622959
http://dx.doi.org/10.1093/nar/gkr362
work_keys_str_mv AT asmannyanw anovelbioinformaticspipelineforidentificationandcharacterizationoffusiontranscriptsinbreastcancerandnormalcelllines
AT hossainasif anovelbioinformaticspipelineforidentificationandcharacterizationoffusiontranscriptsinbreastcancerandnormalcelllines
AT necelabrianm anovelbioinformaticspipelineforidentificationandcharacterizationoffusiontranscriptsinbreastcancerandnormalcelllines
AT middhasumit anovelbioinformaticspipelineforidentificationandcharacterizationoffusiontranscriptsinbreastcancerandnormalcelllines
AT kalarikrishnar anovelbioinformaticspipelineforidentificationandcharacterizationoffusiontranscriptsinbreastcancerandnormalcelllines
AT sunzhifu anovelbioinformaticspipelineforidentificationandcharacterizationoffusiontranscriptsinbreastcancerandnormalcelllines
AT chaihighseng anovelbioinformaticspipelineforidentificationandcharacterizationoffusiontranscriptsinbreastcancerandnormalcelllines
AT williamsondavidw anovelbioinformaticspipelineforidentificationandcharacterizationoffusiontranscriptsinbreastcancerandnormalcelllines
AT radiskyderek anovelbioinformaticspipelineforidentificationandcharacterizationoffusiontranscriptsinbreastcancerandnormalcelllines
AT schrothgaryp anovelbioinformaticspipelineforidentificationandcharacterizationoffusiontranscriptsinbreastcancerandnormalcelllines
AT kocherjeanpierrea anovelbioinformaticspipelineforidentificationandcharacterizationoffusiontranscriptsinbreastcancerandnormalcelllines
AT perezeditha anovelbioinformaticspipelineforidentificationandcharacterizationoffusiontranscriptsinbreastcancerandnormalcelllines
AT thompsoneaubrey anovelbioinformaticspipelineforidentificationandcharacterizationoffusiontranscriptsinbreastcancerandnormalcelllines
AT asmannyanw novelbioinformaticspipelineforidentificationandcharacterizationoffusiontranscriptsinbreastcancerandnormalcelllines
AT hossainasif novelbioinformaticspipelineforidentificationandcharacterizationoffusiontranscriptsinbreastcancerandnormalcelllines
AT necelabrianm novelbioinformaticspipelineforidentificationandcharacterizationoffusiontranscriptsinbreastcancerandnormalcelllines
AT middhasumit novelbioinformaticspipelineforidentificationandcharacterizationoffusiontranscriptsinbreastcancerandnormalcelllines
AT kalarikrishnar novelbioinformaticspipelineforidentificationandcharacterizationoffusiontranscriptsinbreastcancerandnormalcelllines
AT sunzhifu novelbioinformaticspipelineforidentificationandcharacterizationoffusiontranscriptsinbreastcancerandnormalcelllines
AT chaihighseng novelbioinformaticspipelineforidentificationandcharacterizationoffusiontranscriptsinbreastcancerandnormalcelllines
AT williamsondavidw novelbioinformaticspipelineforidentificationandcharacterizationoffusiontranscriptsinbreastcancerandnormalcelllines
AT radiskyderek novelbioinformaticspipelineforidentificationandcharacterizationoffusiontranscriptsinbreastcancerandnormalcelllines
AT schrothgaryp novelbioinformaticspipelineforidentificationandcharacterizationoffusiontranscriptsinbreastcancerandnormalcelllines
AT kocherjeanpierrea novelbioinformaticspipelineforidentificationandcharacterizationoffusiontranscriptsinbreastcancerandnormalcelllines
AT perezeditha novelbioinformaticspipelineforidentificationandcharacterizationoffusiontranscriptsinbreastcancerandnormalcelllines
AT thompsoneaubrey novelbioinformaticspipelineforidentificationandcharacterizationoffusiontranscriptsinbreastcancerandnormalcelllines