Cargando…

Pleiotropic Effects of GIP on Islet Function Involve Osteopontin

OBJECTIVE: The incretin hormone GIP (glucose-dependent insulinotropic polypeptide) promotes pancreatic β-cell function by potentiating insulin secretion and β-cell proliferation. Recently, a combined analysis of several genome-wide association studies (Meta-analysis of Glucose and Insulin-Related Tr...

Descripción completa

Detalles Bibliográficos
Autores principales: Lyssenko, Valeriya, Eliasson, Lena, Kotova, Olga, Pilgaard, Kasper, Wierup, Nils, Salehi, Albert, Wendt, Anna, Jonsson, Anna, De Marinis, Yang Z., Berglund, Lisa M., Taneera, Jalal, Balhuizen, Alexander, Hansson, Ola, Osmark, Peter, Dunér, Pontus, Brøns, Charlotte, Stančáková, Alena, Kuusisto, Johanna, Bugliani, Marco, Saxena, Richa, Ahlqvist, Emma, Kieffer, Timothy J., Tuomi, Tiinamaija, Isomaa, Bo, Melander, Olle, Sonestedt, Emily, Orho-Melander, Marju, Nilsson, Peter, Bonetti, Sara, Bonadonna, Riccardo, Miccoli, Roberto, DelPrato, Stefano, Marchetti, Piero, Madsbad, Sten, Poulsen, Pernille, Vaag, Allan, Laakso, Markku, Gomez, Maria F., Groop, Leif
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Diabetes Association 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3161325/
https://www.ncbi.nlm.nih.gov/pubmed/21810601
http://dx.doi.org/10.2337/db10-1532
_version_ 1782210677624012800
author Lyssenko, Valeriya
Eliasson, Lena
Kotova, Olga
Pilgaard, Kasper
Wierup, Nils
Salehi, Albert
Wendt, Anna
Jonsson, Anna
De Marinis, Yang Z.
Berglund, Lisa M.
Taneera, Jalal
Balhuizen, Alexander
Hansson, Ola
Osmark, Peter
Dunér, Pontus
Brøns, Charlotte
Stančáková, Alena
Kuusisto, Johanna
Bugliani, Marco
Saxena, Richa
Ahlqvist, Emma
Kieffer, Timothy J.
Tuomi, Tiinamaija
Isomaa, Bo
Melander, Olle
Sonestedt, Emily
Orho-Melander, Marju
Nilsson, Peter
Bonetti, Sara
Bonadonna, Riccardo
Miccoli, Roberto
DelPrato, Stefano
Marchetti, Piero
Madsbad, Sten
Poulsen, Pernille
Vaag, Allan
Laakso, Markku
Gomez, Maria F.
Groop, Leif
author_facet Lyssenko, Valeriya
Eliasson, Lena
Kotova, Olga
Pilgaard, Kasper
Wierup, Nils
Salehi, Albert
Wendt, Anna
Jonsson, Anna
De Marinis, Yang Z.
Berglund, Lisa M.
Taneera, Jalal
Balhuizen, Alexander
Hansson, Ola
Osmark, Peter
Dunér, Pontus
Brøns, Charlotte
Stančáková, Alena
Kuusisto, Johanna
Bugliani, Marco
Saxena, Richa
Ahlqvist, Emma
Kieffer, Timothy J.
Tuomi, Tiinamaija
Isomaa, Bo
Melander, Olle
Sonestedt, Emily
Orho-Melander, Marju
Nilsson, Peter
Bonetti, Sara
Bonadonna, Riccardo
Miccoli, Roberto
DelPrato, Stefano
Marchetti, Piero
Madsbad, Sten
Poulsen, Pernille
Vaag, Allan
Laakso, Markku
Gomez, Maria F.
Groop, Leif
author_sort Lyssenko, Valeriya
collection PubMed
description OBJECTIVE: The incretin hormone GIP (glucose-dependent insulinotropic polypeptide) promotes pancreatic β-cell function by potentiating insulin secretion and β-cell proliferation. Recently, a combined analysis of several genome-wide association studies (Meta-analysis of Glucose and Insulin-Related Traits Consortium [MAGIC]) showed association to postprandial insulin at the GIP receptor (GIPR) locus. Here we explored mechanisms that could explain the protective effects of GIP on islet function. RESEARCH DESIGN AND METHODS: Associations of GIPR rs10423928 with metabolic and anthropometric phenotypes in both nondiabetic (N = 53,730) and type 2 diabetic individuals (N = 2,731) were explored by combining data from 11 studies. Insulin secretion was measured both in vivo in nondiabetic subjects and in vitro in islets from cadaver donors. Insulin secretion was also measured in response to exogenous GIP. The in vitro measurements included protein and gene expression as well as measurements of β-cell viability and proliferation. RESULTS: The A allele of GIPR rs10423928 was associated with impaired glucose- and GIP-stimulated insulin secretion and a decrease in BMI, lean body mass, and waist circumference. The decrease in BMI almost completely neutralized the effect of impaired insulin secretion on risk of type 2 diabetes. Expression of GIPR mRNA was decreased in human islets from carriers of the A allele or patients with type 2 diabetes. GIP stimulated osteopontin (OPN) mRNA and protein expression. OPN expression was lower in carriers of the A allele. Both GIP and OPN prevented cytokine-induced reduction in cell viability (apoptosis). In addition, OPN stimulated cell proliferation in insulin-secreting cells. CONCLUSIONS: These findings support β-cell proliferative and antiapoptotic roles for GIP in addition to its action as an incretin hormone. Identification of a link between GIP and OPN may shed new light on the role of GIP in preservation of functional β-cell mass in humans.
format Online
Article
Text
id pubmed-3161325
institution National Center for Biotechnology Information
language English
publishDate 2011
publisher American Diabetes Association
record_format MEDLINE/PubMed
spelling pubmed-31613252012-09-01 Pleiotropic Effects of GIP on Islet Function Involve Osteopontin Lyssenko, Valeriya Eliasson, Lena Kotova, Olga Pilgaard, Kasper Wierup, Nils Salehi, Albert Wendt, Anna Jonsson, Anna De Marinis, Yang Z. Berglund, Lisa M. Taneera, Jalal Balhuizen, Alexander Hansson, Ola Osmark, Peter Dunér, Pontus Brøns, Charlotte Stančáková, Alena Kuusisto, Johanna Bugliani, Marco Saxena, Richa Ahlqvist, Emma Kieffer, Timothy J. Tuomi, Tiinamaija Isomaa, Bo Melander, Olle Sonestedt, Emily Orho-Melander, Marju Nilsson, Peter Bonetti, Sara Bonadonna, Riccardo Miccoli, Roberto DelPrato, Stefano Marchetti, Piero Madsbad, Sten Poulsen, Pernille Vaag, Allan Laakso, Markku Gomez, Maria F. Groop, Leif Diabetes Genetics OBJECTIVE: The incretin hormone GIP (glucose-dependent insulinotropic polypeptide) promotes pancreatic β-cell function by potentiating insulin secretion and β-cell proliferation. Recently, a combined analysis of several genome-wide association studies (Meta-analysis of Glucose and Insulin-Related Traits Consortium [MAGIC]) showed association to postprandial insulin at the GIP receptor (GIPR) locus. Here we explored mechanisms that could explain the protective effects of GIP on islet function. RESEARCH DESIGN AND METHODS: Associations of GIPR rs10423928 with metabolic and anthropometric phenotypes in both nondiabetic (N = 53,730) and type 2 diabetic individuals (N = 2,731) were explored by combining data from 11 studies. Insulin secretion was measured both in vivo in nondiabetic subjects and in vitro in islets from cadaver donors. Insulin secretion was also measured in response to exogenous GIP. The in vitro measurements included protein and gene expression as well as measurements of β-cell viability and proliferation. RESULTS: The A allele of GIPR rs10423928 was associated with impaired glucose- and GIP-stimulated insulin secretion and a decrease in BMI, lean body mass, and waist circumference. The decrease in BMI almost completely neutralized the effect of impaired insulin secretion on risk of type 2 diabetes. Expression of GIPR mRNA was decreased in human islets from carriers of the A allele or patients with type 2 diabetes. GIP stimulated osteopontin (OPN) mRNA and protein expression. OPN expression was lower in carriers of the A allele. Both GIP and OPN prevented cytokine-induced reduction in cell viability (apoptosis). In addition, OPN stimulated cell proliferation in insulin-secreting cells. CONCLUSIONS: These findings support β-cell proliferative and antiapoptotic roles for GIP in addition to its action as an incretin hormone. Identification of a link between GIP and OPN may shed new light on the role of GIP in preservation of functional β-cell mass in humans. American Diabetes Association 2011-09 2011-08-20 /pmc/articles/PMC3161325/ /pubmed/21810601 http://dx.doi.org/10.2337/db10-1532 Text en © 2011 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details.
spellingShingle Genetics
Lyssenko, Valeriya
Eliasson, Lena
Kotova, Olga
Pilgaard, Kasper
Wierup, Nils
Salehi, Albert
Wendt, Anna
Jonsson, Anna
De Marinis, Yang Z.
Berglund, Lisa M.
Taneera, Jalal
Balhuizen, Alexander
Hansson, Ola
Osmark, Peter
Dunér, Pontus
Brøns, Charlotte
Stančáková, Alena
Kuusisto, Johanna
Bugliani, Marco
Saxena, Richa
Ahlqvist, Emma
Kieffer, Timothy J.
Tuomi, Tiinamaija
Isomaa, Bo
Melander, Olle
Sonestedt, Emily
Orho-Melander, Marju
Nilsson, Peter
Bonetti, Sara
Bonadonna, Riccardo
Miccoli, Roberto
DelPrato, Stefano
Marchetti, Piero
Madsbad, Sten
Poulsen, Pernille
Vaag, Allan
Laakso, Markku
Gomez, Maria F.
Groop, Leif
Pleiotropic Effects of GIP on Islet Function Involve Osteopontin
title Pleiotropic Effects of GIP on Islet Function Involve Osteopontin
title_full Pleiotropic Effects of GIP on Islet Function Involve Osteopontin
title_fullStr Pleiotropic Effects of GIP on Islet Function Involve Osteopontin
title_full_unstemmed Pleiotropic Effects of GIP on Islet Function Involve Osteopontin
title_short Pleiotropic Effects of GIP on Islet Function Involve Osteopontin
title_sort pleiotropic effects of gip on islet function involve osteopontin
topic Genetics
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3161325/
https://www.ncbi.nlm.nih.gov/pubmed/21810601
http://dx.doi.org/10.2337/db10-1532
work_keys_str_mv AT lyssenkovaleriya pleiotropiceffectsofgiponisletfunctioninvolveosteopontin
AT eliassonlena pleiotropiceffectsofgiponisletfunctioninvolveosteopontin
AT kotovaolga pleiotropiceffectsofgiponisletfunctioninvolveosteopontin
AT pilgaardkasper pleiotropiceffectsofgiponisletfunctioninvolveosteopontin
AT wierupnils pleiotropiceffectsofgiponisletfunctioninvolveosteopontin
AT salehialbert pleiotropiceffectsofgiponisletfunctioninvolveosteopontin
AT wendtanna pleiotropiceffectsofgiponisletfunctioninvolveosteopontin
AT jonssonanna pleiotropiceffectsofgiponisletfunctioninvolveosteopontin
AT demarinisyangz pleiotropiceffectsofgiponisletfunctioninvolveosteopontin
AT berglundlisam pleiotropiceffectsofgiponisletfunctioninvolveosteopontin
AT taneerajalal pleiotropiceffectsofgiponisletfunctioninvolveosteopontin
AT balhuizenalexander pleiotropiceffectsofgiponisletfunctioninvolveosteopontin
AT hanssonola pleiotropiceffectsofgiponisletfunctioninvolveosteopontin
AT osmarkpeter pleiotropiceffectsofgiponisletfunctioninvolveosteopontin
AT dunerpontus pleiotropiceffectsofgiponisletfunctioninvolveosteopontin
AT brønscharlotte pleiotropiceffectsofgiponisletfunctioninvolveosteopontin
AT stancakovaalena pleiotropiceffectsofgiponisletfunctioninvolveosteopontin
AT kuusistojohanna pleiotropiceffectsofgiponisletfunctioninvolveosteopontin
AT buglianimarco pleiotropiceffectsofgiponisletfunctioninvolveosteopontin
AT saxenaricha pleiotropiceffectsofgiponisletfunctioninvolveosteopontin
AT ahlqvistemma pleiotropiceffectsofgiponisletfunctioninvolveosteopontin
AT kieffertimothyj pleiotropiceffectsofgiponisletfunctioninvolveosteopontin
AT tuomitiinamaija pleiotropiceffectsofgiponisletfunctioninvolveosteopontin
AT isomaabo pleiotropiceffectsofgiponisletfunctioninvolveosteopontin
AT melanderolle pleiotropiceffectsofgiponisletfunctioninvolveosteopontin
AT sonestedtemily pleiotropiceffectsofgiponisletfunctioninvolveosteopontin
AT orhomelandermarju pleiotropiceffectsofgiponisletfunctioninvolveosteopontin
AT nilssonpeter pleiotropiceffectsofgiponisletfunctioninvolveosteopontin
AT bonettisara pleiotropiceffectsofgiponisletfunctioninvolveosteopontin
AT bonadonnariccardo pleiotropiceffectsofgiponisletfunctioninvolveosteopontin
AT miccoliroberto pleiotropiceffectsofgiponisletfunctioninvolveosteopontin
AT delpratostefano pleiotropiceffectsofgiponisletfunctioninvolveosteopontin
AT marchettipiero pleiotropiceffectsofgiponisletfunctioninvolveosteopontin
AT madsbadsten pleiotropiceffectsofgiponisletfunctioninvolveosteopontin
AT poulsenpernille pleiotropiceffectsofgiponisletfunctioninvolveosteopontin
AT vaagallan pleiotropiceffectsofgiponisletfunctioninvolveosteopontin
AT laaksomarkku pleiotropiceffectsofgiponisletfunctioninvolveosteopontin
AT gomezmariaf pleiotropiceffectsofgiponisletfunctioninvolveosteopontin
AT groopleif pleiotropiceffectsofgiponisletfunctioninvolveosteopontin